Bud induction in decapitated Hydra attenuata by 5-azacytidine: a morphological study

Development ◽  
1986 ◽  
Vol 93 (1) ◽  
pp. 105-119
Author(s):  
L. De Petrocellis ◽  
V. Maharajan ◽  
B. De Petrocellis ◽  
R. Minei

The effect of 5-azacytidine (5-azaCR) on head regeneration and budding in hydra are reported. Hydra attenuata were exposed to various doses of 5-azaCR for 48 h and then decapitated and cultured. Head regeneration and bud formation were observed for 12 days after decapitation. Untreated control hydra regenerated heads within 7 to 8 days of decapitation with a budding index of 0·2. Buds invariably arose in the normal budding zone (below the gastric region). In the group treated with 0·8mM-5-azaCR, 9 days after decapitation head regeneration was seen in only 13% of animals, and an average of two buds per hydra were formed, most of which were in the vicinity of the distal end. Induction of budding was also seen in the animals that regenerated heads. In animals exposed to 1 mM-5-azaCR three main types of responses were observed 9 days after decapitation. (1) 44% of the animals regenerated normal heads; about half of them developed at least one bud and these buds originated in the budding zone. (2) 17·5% of the animals developed abnormal, long hypostome-like structures with single or bifurcated tentacles at theirtips. There were at least two buds per animal and they were invariably at abnormal sites. (3) 32% of the animals failed to regenerate heads, although they developed two buds. 87% ofthese buds originated in abnormal sites of the body column and a large number (72%) did not detach even by the 12th day after decapitation. Both 5 and 10 mM of 5-azaCR were toxic to the animals; the survivors formed large globeshaped heads. Bud induction was seen in 60% and 28% of animals in the 5 and 10 mM groups, respectively. These observations demonstrate that 5-azaCR induces bud formation in hydra at doses that inhibit head regeneration. This bud induction might be due to a specific expression of gene products responsible for bud formation.

Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4743-4752 ◽  
Author(s):  
K.M. Smith ◽  
L. Gee ◽  
H.R. Bode

Developmental gradients are known to play important roles in axial patterning in hydra. Current efforts are directed toward elucidating the molecular basis of these gradients. We report the isolation and characterization of HyAlx, an aristaless-related gene in hydra. The expression patterns of the gene in adult hydra, as well as during bud formation, head regeneration and the formation of ectopic head structures along the body column, indicate the gene plays a role in the specification of tissue for tentacle formation. The use of RNAi provides more direct evidence for this conclusion. The different patterns of HyAlx expression during head regeneration and bud formation also provide support for a recent version of a reaction-diffusion model for axial patterning in hydra.


1981 ◽  
Vol 52 (1) ◽  
pp. 85-98
Author(s):  
S. Heimfeld ◽  
H.R. Bode

The interstitial cell of hydra is a multipotent stem cell, which produces nerve cells as one of its differentiated cell types. The amount of interstitial cell commitment to nerve differentiation varies in an axially dependent pattern along the body column. The distribution of nerve cell density has the same equivalent axial pattern. These facts have led to speculation that the regulation of nerve cell commitment is dictated by the nerve cell density. We examined this question by assaying interstitial cell commitment behaviour in 2 cases where the normal nerve cell density of the tissue had been perturbed: (1) in epithelial hydra in which no nerve cells were present; and (2) in hydra derived from regenerating-tip isolates in which the nerve density was increased nearly 4-fold. We found no evidence of regulation of nerve cell commitment in response to the abnormal nerve cell densities. However, the typical axial pattern of nerve commitment was still obtained in both sets of experiments, which suggests that interstitial cell commitment to nerve differentiation is dependent on some parameter of axial location that is not associated directly with the local nerve cell density.


1987 ◽  
Vol 87 (2) ◽  
pp. 315-322
Author(s):  
TOSHITAKA FUJISAWA

Stenotele nematocytes in Hydra are differentiated predominantly in the proximal regions and in gradually decreasing numbers in the more distal regions of the body column. To test whether this position effect is directed by an inhibitory signal from head tissue or by a stimulatory signal from foot tissue, head or foot tissue was laterally grafted from one animal to different positions on another animal. Heads grafted to proximal positions strongly inhibited stenotele differentiation, while the foot exhibited no stimulatory effect. In addition, tissue from gastric regions showed intermediate levels of inhibition. Thus, the inhibitory signal appears to be distributed in a gradient along the body column from head to foot. During head regeneration, the inhibitory signal disappeared abruptly from the distal tip and reappeared rapidly. These results suggest that the inhibitory signal is involved in generating the regional pattern of stenotele differentiation. Head tissue from epithelial hydra, which lacks the interstitial cell lineage, also inhibited stenotele differentiation, suggesting that the inhibitory signal is localized in epithelial cells.


2021 ◽  
Author(s):  
Manu Krishnan Unni ◽  
Puli Chandramouli Reddy ◽  
Sanjeev Galande

The Hippo signaling pathway has been shown to be involved in the regulation of cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and hence abrogates its function in transcription of target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report for the first time the existence of a complete set of Hippo pathway core components in Hydra. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested conservation of YAP-TEAD interaction in Hydra. We also characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. The YAP expressing cells are recruited early during head regeneration and budding implicating the Hippo pathway in early response to injury or establishment of oral fate. These cells exhibit a non-clustered existence at the site of regeneration and budding, indicating the involvement of a new population of YAP expressing cells during oral fate specification. Collectively, we posit that the Hippo pathway is an important signaling system in Hydra, its components are ubiquitously expressed in the Hydra body column, and may play crucial role in Hydra oral fate specification.


1976 ◽  
Vol 21 (1) ◽  
pp. 15-34 ◽  
Author(s):  
H.R. Bode ◽  
K.M. Flick

The distribution and dynamics of the 4 nematocyte populations of Hydra attenuata were investigated. Ninety-seven per cent of all nematocytes, including all 4 types, are mounted in the battery cells of the tentacles. The remaining 3%, including 2 types (stenoteles and holotrichous isorhizas) are mounted in the ectoderm of the body column. Eight-two per cent of all nematocytes are desmonemes; 11%, atrichous isorhizas; 5%, stenoteles; and 2%, holotrichous isorhizas. The density of each nematocyte population increases along the length of the tentacle towards the tip. The percentages of the total nematocytes per quarter of tentacle for each of the 4 quarters starting at the base is 15, 18, 25 and 42% respectively. The turnover time of the nematocyte populations in the tentacles was measured with 2 methods. First, the transit time for a carbon-marked battery cell from the base to the tip of the tentacle was measured. Secondly, the time required to replace the unlabelled nematocytes in the tentacles with [3H]proline-labelled nematocytes was measured. In both cases the time was 7–9 days. Based on these data (distribution and turnover time) a model was constructed for the dynamics of the nematocyte populations in the tentacles. The numbers of nematocytes produced dialy in the body column as predicted by the model are in reasonable agreement with the measured values.


Development ◽  
2002 ◽  
Vol 129 (6) ◽  
pp. 1521-1532 ◽  
Author(s):  
Hiroshi Shimizu ◽  
Xiaoming Zhang ◽  
Jinsong Zhang ◽  
Alexey Leontovich ◽  
Kaiyin Fei ◽  
...  

As a member of the phylum Cnidaria, the body wall of hydra is organized as an epithelium bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM). Previous studies have established the general molecular structure of hydra ECM and indicate that it is organized as two subepithelial zones that contain basement membrane components such as laminin and a central fibrous zone that contains interstitial matrix components such as a unique type I fibrillar collagen. Because of its simple structure and high regenerative capacity, hydra has been used as a developmental model to study cell-ECM interaction during epithelial morphogenesis. The current study extends previous studies by focusing on the relationship of ECM biogenesis to epithelial morphogenesis in hydra, as monitored during head regeneration or after simple incision of the epithelium. Histological studies indicated that decapitation or incision of the body column resulted in an immediate retraction of the ECM at the wound site followed by a re-fusion of the bilayer within 1 hour. After changes in the morphology of epithelial cells at the regenerating pole, initiation of de novo biogenesis of an ECM began within hours while full reformation of the mature matrix required approximately 2 days. These processes were monitored using probes to three matrix or matrix-associated components: basement membrane-associated hydra laminin β1 chain (HLM-β1), interstitial matrix-associated hydra fibrillar collagen (Hcol-I) and hydra matrix metalloproteinase (HMMP). While upregulation of mRNA for both HLM-β1 and Hcol-I occurred by 3 hours, expression of the former was restricted to the endoderm and expression of the latter was restricted to the ectoderm. Upregulation of HMMP mRNA was also associated with the endoderm and its expression paralleled that for HLM-β1. As monitored by immunofluorescence, HLM-β1 protein first appeared in each of the two subepithelial zones (basal lamina) at about 7 hours, while Hcol-I protein was first observed in the central fibrous zone (interstitial matrix) between 15 and 24 hours. The same temporal and spatial expression pattern for these matrix and matrix-associated components was observed during incision of the body column, thus indicating that these processes are a common feature of the epithelium in hydra. The correlation of loss of the ECM, cell shape changes and subsequent de novo biogenesis of matrix and matrix-associated components were all functionally coupled by antisense experiments in which translation of HLM-β1 and HMMP was blocked and head regeneration was reversibly inhibited. In addition, inhibition of translation of HLM-β1 caused an inhibition in the appearance of Hcol-I into the ECM, thus suggesting that binding of HLM-β1 to the basal plasma membrane of ectodermal cells signaled the subsequent discharge of Hcol-I from this cell layer into the newly forming matrix. Given the early divergence of hydra, these studies point to the fundamental importance of cell-ECM interactions during epithelial morphogenesis.


2004 ◽  
Vol 190 (8) ◽  
Author(s):  
Hiroshi Shimizu ◽  
Osamu Koizumi ◽  
Toshitaka Fujisawa
Keyword(s):  
The Body ◽  

2020 ◽  
Author(s):  
F.W. Riemslagh ◽  
E.C. van der Toorn ◽  
R.F.M Verhagen ◽  
A. Maas ◽  
L.W.J. Bosman ◽  
...  

AbstractThe hexanucleotide G4C2 repeat expansion in the first intron of the C9ORF72 gene explains the majority of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) cases. Numerous studies have indicated the toxicity of dipeptide repeats (DPRs) which are produced via repeat-associated non-AUG (RAN) translation from the repeat expansion and accumulate in the brain of C9FTD/ALS patients. Mouse models expressing the human C9ORF72 repeat and/or DPRs show variable pathological, functional and behavioral characteristics of FTD and ALS. Here, we report a new Tet-on inducible mouse model that expresses 36x pure G4C2 repeats with 100bp upstream and downstream human flanking regions. Brain specific expression causes the formation of sporadic sense DPRs aggregates upon 6 months dox induction but no apparent neurodegeneration. Expression in the rest of the body evokes abundant sense DPRs in multiple organs, leading to weight loss, neuromuscular junction disruption, myopathy and a locomotor phenotype within the time frame of four weeks. We did not observe any RNA foci or pTDP-43 pathology. Accumulation of DPRs and the myopathy phenotype could be prevented when 36x G4C2 repeat expression was stopped after 1 week. After 2 weeks of expression, the phenotype could not be reversed, even though DPR levels were reduced. In conclusion, expression of 36x pure G4C2 repeats including 100bp human flanking regions is sufficient for RAN translation of sense DPRs and evokes a functional locomotor phenotype. Our inducible mouse model highlights the importance of early diagnosis and treatment for C9FTD/ALS patients.Summary statementOnly 36 C9ORF72 repeats are sufficient for RAN translation in a new mouse model for ALS and FTD. Reducing toxic dipeptides can prevent but not reverse the phenotype.


Development ◽  
1988 ◽  
Vol 102 (1) ◽  
pp. 85-99 ◽  
Author(s):  
J. Cooke ◽  
E.J. Smith

We have carried out an anatomical study of Xenopus larval and gastrula stages resulting from treatment of synchronous early blastulae for brief periods with Li+. We confirm the proposal that such treatment causes a particular transformation, and partial elimination, of the normal body pattern. Coordinated restriction of pattern, without appreciable loss of cell number, is seen in all three germ layers. The distortion has been investigated by quantitative study of mesoderms at a standard stage, in relation to the normal fate map for mesoderm, and with the help of immunofluorescence on sections for somitic muscle and for blood. In the extreme syndrome, mesoderm arises from all around the blastula as usual, but is symmetrical and corresponds to that arising near the dorsal/anterior meridian of the normally specified egg or embryo with a large posterior subset of the normal pattern values thus missing. The effect is independent of any inhibition of archenteron formation or mesoderm migration (i.e. the cell mechanics of gastrulation) incurred by the treatment. It is also quite separate from a syndrome caused by more prolonged exposure to Li+ during gastrulation. A small, but distinctive, anterior pattern region is also not expressed and, anomalously in relation to their general nature, these forms differentiate considerable blood tissue. We consider the implications of some details of the pattern restriction for our understanding of interaction in the normal development and propose that the Li+ embryo is likely to be useful as a specific ‘differential screen’, in relation to the normal, during the search for those gene products that mediate initial regionalization of the body.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 129-141 ◽  
Author(s):  
L. Yan ◽  
K. Fei ◽  
J. Zhang ◽  
S. Dexter ◽  
M.P. Sarras

Several members of the newly emerging astacin metalloproteinase family have been shown to function in a variety of biological events, including cell differentiation and morphogenesis during both embryonic development and adult tissue differentiation. We have characterized a new astacin proteinase, hydra metalloproteinase 2 (HMP2) from the Cnidarian, Hydra vulgaris. HMP2 is translated from a single mRNA of 1.7 kb that contains a 1488 bp open reading frame encoding a putative protein product of 496 amino acids. The overall structure of HMP2 most closely resembles that of meprins, a subgroup of astacin metalloproteinases. The presence of a transient signal peptide and a putative prosequence indicates that HMP2 is a secreted protein that requires post-translational processing. The mature HMP2 starts with an astacin proteinase domain that contains a zinc binding motif characteristic of the astacin family. Its COOH terminus is composed of two potential protein-protein interaction domains: an “MAM” domain (named after meprins, A-5 protein and receptor protein tyrosine phosphatase mu) that is only present in meprin-like astacin proteinases; and a unique C-terminal domain (TH domain) that is also present in another hydra metalloproteinase, HMP1, in Podocoryne metalloproteinase 1 (PMP1) of jellyfish and in toxins of sea anemone. The spatial expression pattern of HMP2 was determined by both mRNA whole-mount in situ hybridization and immunofluorescence studies. Both morphological techniques indicated that HMP2 is expressed only by the cells in the endodermal layer of the body column of hydra. While the highest level of HMP2 mRNA expression was observed at the junction between the body column and the foot process, immunofluorescence studies indicated that HMP2 protein was present as far apically as the base of the tentacles. In situ analysis also indicated expression of HMP2 during regeneration of the foot process. To test whether the higher levels of HMP2 mRNA expression at the basal pole related to processes underlying foot morphogenesis, antisense studies were conducted. Using a specialized technique named localized electroporation (LEP), antisense constructs to HMP2 were locally introduced into the endodermal layer of cells at the basal pole of polyps and foot regeneration was initiated and monitored. Treatment with antisense to HMP2 inhibited foot regeneration as compared to mismatch and sense controls. These functional studies in combination with the fact that HMP2 protein was expressed not only at the junction between the body column and the foot process, but also as far apically as the base of the tentacles, suggest that this meprin-class metalloproteinase may be multifunctional in hydra.


Sign in / Sign up

Export Citation Format

Share Document