Three digestive movements in Hydra regulated by the diffuse nerve net in the body column

2004 ◽  
Vol 190 (8) ◽  
Author(s):  
Hiroshi Shimizu ◽  
Osamu Koizumi ◽  
Toshitaka Fujisawa
Keyword(s):  
The Body ◽  
Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 129-141 ◽  
Author(s):  
L. Yan ◽  
K. Fei ◽  
J. Zhang ◽  
S. Dexter ◽  
M.P. Sarras

Several members of the newly emerging astacin metalloproteinase family have been shown to function in a variety of biological events, including cell differentiation and morphogenesis during both embryonic development and adult tissue differentiation. We have characterized a new astacin proteinase, hydra metalloproteinase 2 (HMP2) from the Cnidarian, Hydra vulgaris. HMP2 is translated from a single mRNA of 1.7 kb that contains a 1488 bp open reading frame encoding a putative protein product of 496 amino acids. The overall structure of HMP2 most closely resembles that of meprins, a subgroup of astacin metalloproteinases. The presence of a transient signal peptide and a putative prosequence indicates that HMP2 is a secreted protein that requires post-translational processing. The mature HMP2 starts with an astacin proteinase domain that contains a zinc binding motif characteristic of the astacin family. Its COOH terminus is composed of two potential protein-protein interaction domains: an “MAM” domain (named after meprins, A-5 protein and receptor protein tyrosine phosphatase mu) that is only present in meprin-like astacin proteinases; and a unique C-terminal domain (TH domain) that is also present in another hydra metalloproteinase, HMP1, in Podocoryne metalloproteinase 1 (PMP1) of jellyfish and in toxins of sea anemone. The spatial expression pattern of HMP2 was determined by both mRNA whole-mount in situ hybridization and immunofluorescence studies. Both morphological techniques indicated that HMP2 is expressed only by the cells in the endodermal layer of the body column of hydra. While the highest level of HMP2 mRNA expression was observed at the junction between the body column and the foot process, immunofluorescence studies indicated that HMP2 protein was present as far apically as the base of the tentacles. In situ analysis also indicated expression of HMP2 during regeneration of the foot process. To test whether the higher levels of HMP2 mRNA expression at the basal pole related to processes underlying foot morphogenesis, antisense studies were conducted. Using a specialized technique named localized electroporation (LEP), antisense constructs to HMP2 were locally introduced into the endodermal layer of cells at the basal pole of polyps and foot regeneration was initiated and monitored. Treatment with antisense to HMP2 inhibited foot regeneration as compared to mismatch and sense controls. These functional studies in combination with the fact that HMP2 protein was expressed not only at the junction between the body column and the foot process, but also as far apically as the base of the tentacles, suggest that this meprin-class metalloproteinase may be multifunctional in hydra.


1974 ◽  
Vol 61 (1) ◽  
pp. 129-143
Author(s):  
I. D. MCFARLANE

1. The rhythm of spontaneous nerve-net pulses is reset by intercalated evoked nerve-net pulses. 2. The origin of spontaneous nerve-net pulses can shift during a burst. There seem to be many potential pacemakers, widely distributed throughout the body, but apparently absent from the tentacles. 3. If a spontaneous or evoked pulse in the endodermal slow conduction system (SS 2) occurs during a burst, the nerve-net pulse intervals are increased during a 15-30 sec period following the SS 2 pulse. Additional SS 2 pulses cause a further increase in pulse intervals. 4. Nerve-net bursts are followed by a sequence of muscular contractions. The size of the contraction shown by any muscle group depends on nerve-net pulse number and frequency, the optimum frequency being different for different muscles. It is suggested that the SS 2 pulse action on nerve-net pulse frequency can significantly alter the behavioural output of nerve-net bursts. The SS 2 activity may represent sensory feedback on to the nervous pacemakers.


2016 ◽  
Vol 371 (1685) ◽  
pp. 20150040 ◽  
Author(s):  
Y. Wenger ◽  
W. Buzgariu ◽  
B. Galliot

Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory–motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra , we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors ( Dlx , Dlx1 , DMBX1/Manacle , Ets1 , Gli3 , KLF11 , LMX1A , ZNF436 , Shox1 ), epitheliopeptides ( Arminins , PW peptide ), neurosignalling components ( CAMK1D , DDCl2 , Inx1 ), ligand-ion channel receptors ( CHRNA1 , NaC7 ), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution.


2020 ◽  
Author(s):  
Berenice Ziegler ◽  
Irene Yiallouros ◽  
Benjamin Trageser ◽  
Sumit Kumar ◽  
Moritz Mercker ◽  
...  

AbstractThe Hydra head organizer acts as a signaling center that initiates and maintains the primary body axis in steady state polyps and during budding or regeneration. Wnt/beta-Catenin signaling functions as a primary cue controlling this process, but how Wnt ligand activity is locally restricted at the protein level is poorly understood.Here we report the identification of an astacin family proteinase as a Wnt processing factor. Hydra astacin-7 (HAS-7) is expressed from gland cells as an apical-distal gradient in the body column, peaking close beneath the tentacle zone. HAS-7 siRNA knockdown abrogates HyWnt3 proteolysis in the head tissue and induces a robust double axis phenotype, which is rescued by simultaneous HyWnt3 knockdown. Accordingly, double axes are also observed in conditions of increased Wnt levels as in transgenic actin::HyWnt3 and HyDkk1/2/4 siRNA treated animals. HyWnt3-induced double axes in Xenopus embryos could be rescued by co-injection of HAS-7 mRNA. Mathematical modelling combined with experimental promotor analysis indicate an indirect regulation of HAS-7 by beta-Catenin, expanding the classical Turing-type activator-inhibitor model.Our data suggest a negative regulatory function of Wnt processing astacin proteinases in the global patterning of the oral-aboral axis in Hydra.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021426118
Author(s):  
Nishan Shettigar ◽  
Anirudh Chakravarthy ◽  
Suchitta Umashankar ◽  
Vairavan Lakshmanan ◽  
Dasaradhi Palakodeti ◽  
...  

The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye–brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin–expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in “adult-like animals.” Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.


Development ◽  
1999 ◽  
Vol 126 (23) ◽  
pp. 5245-5254 ◽  
Author(s):  
M. Broun ◽  
S. Sokol ◽  
H.R. Bode

We have isolated Cngsc, a hydra homologue of goosecoid gene. The homeodomain of Cngsc is identical to the vertebrate (65-72%) and Drosophila (70%) orthologues. When injected into the ventral side of an early Xenopus embryo, Cngsc induces a partial secondary axis. During head formation, Cngsc expression appears prior to, and directly above, the zone where the tentacles will emerge, but is not observed nearby when the single apical tentacle is formed. This observation indicates that the expression of the gene is not necessary for the formation of a tentacle per se. Rather, it may be involved in defining the border between the hypostome and the tentacle zone. When Cngsc(+) tip of an early bud is grafted into the body column, it induces a secondary axis, while the adjacent Cngsc(−) region has much weaker inductive capacities. Thus, Cngsc is expressed in a tissue that acts as an organizer. Cngsc is also expressed in the sensory neurons of the tip of the hypostome and in the epithelial endodermal cells of the upper part of the body column. The plausible roles of Cngsc in organizer function, head formation and anterior neuron differentiation are similar to roles goosecoid plays in vertebrates and Drosophila. It suggests widespread evolutionary conservation of the function of the gene.


Development ◽  
1999 ◽  
Vol 126 (3) ◽  
pp. 517-524 ◽  
Author(s):  
A. Grens ◽  
H. Shimizu ◽  
S.A. Hoffmeister ◽  
H.R. Bode ◽  
T. Fujisawa

Signaling molecules affecting patterning processes are usually proteins and rarely peptides. Two novel peptides, pedibin and Hym-346, that are closely related to one another have been isolated from Hydra vulgaris and Hydra magnipapillata. Several experiments indicate that both cause a reduction in the positional value gradient, the principle patterning process governing the maintenance of form in the adult hydra. The peptides cause an increase in the rate of foot regeneration following bisection of the body column. Treatment of animals with either peptide for an extended period of time resulted in an apical extension of the range of expression of CnNk-2 along the body column. Such an extension is correlated with a decrease in positional value. Transplantation of tissue treated with Hym-346 results in an increase in the fraction forming feet, and aggregates derived from Hym-346 tissue form more feet and fewer heads. The latter two experiments provide a direct measure of the lowering of positional value in the treated tissue. These results suggest that peptides play signaling roles in patterning processes in cnidaria and, plausibly, in more complex metazoans as well.


Sign in / Sign up

Export Citation Format

Share Document