scholarly journals Envisioning the next human genome reference

2021 ◽  
Vol 14 (12) ◽  
Author(s):  
Monkol Lek ◽  
Elaine R. Mardis

Summary: We provide an Editorial perspective on approaches to improve ethnic representation in the human genome reference sequence, enabling its widespread use in genomic studies and precision medicine to benefit all peoples.

2018 ◽  
Vol 45 (11) ◽  
pp. 565-568
Author(s):  
Wei Dong ◽  
Xiaoling Wang ◽  
Zhi Xia ◽  
Xiuqing Zhang ◽  
Huanming Yang

2017 ◽  
Author(s):  
Miten Jain ◽  
Hugh E. Olsen ◽  
Daniel J. Turner ◽  
David Stoddart ◽  
Kira V. Bulazel ◽  
...  

The human genome reference sequence remains incomplete due to the challenge of assembling long tracts of near-identical tandem repeats-in centromeric regions. To address this, we have implemented a nanopore sequencing strategy to generate high quality reads that span hundreds of kilobases of highly repetitive DNAs. Here, we use this advance to produce a sequence assembly and characterization of the centromeric region of a human Y chromosome.


2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


Author(s):  
Ashley Ghiaseddin ◽  
Lan B Hoang Minh ◽  
Michalina Janiszewska ◽  
David Shin ◽  
Wolfgang Wick ◽  
...  

Abstract Despite therapeutic advances for other malignancies, gliomas remain challenging solid tumors to treat. Complete surgical resection is nearly impossible due to gliomas’ diffuse infiltrative nature, and treatment is hampered by restricted access to the tumors due to limited transport across the blood-brain barrier (BBB). Recent advances in genomic studies and next-generation sequencing techniques have led to a better understanding of gliomas and identification of potential aberrant signaling pathways. Targeting the specific genomic abnormalities via novel molecular therapies has opened a new avenue in the management of gliomas, with encouraging results in preclinical studies and early clinical trials. However, molecular characterization of gliomas revealed the significant heterogeneity, which poses a challenge for targeted therapeutic approaches. In this context, leading neuro-oncology researchers and clinicians, industry innovators, and patient advocates convened at the inaugural annual Remission Summit held in Orlando, FL in February 2019 to discuss the latest advances in immunotherapy and precision medicine approaches for the treatment of adult and pediatric brain tumors and outline the unanswered questions, challenges, and opportunities that lay ahead for advancing the duration and quality of life for patients with brain tumors. Here, we provide historical context for precision medicine in other cancers, present emerging approaches for gliomas, discuss their limitations, and outline the steps necessary for future success. We focus on the advances in small molecule targeted therapy, as the use of immunotherapy as an emerging precision medicine modality for glioma treatment has recently been reviewed by our colleagues


Healthcare system is experiencing a paradigm shift to precision medicine. Genotypic–phenotypic affiliation has been found to be a fundamental percept in biology after the completion of Human Genome project. The first era of precision medicine is now split into groups and subgroups, making it a meaningful strategy concurrently throughout the clinical phases of drug designing and development. It likewise recommends healthcare reshaping that suggests disease perceptivity or remedial treatment. Thus, translational genomics addresses bench to bedside approach to achieve P4 medicine (personalized, predictive, preventive, and participatory), i.e., early disease diagnosis and specifically designed treating plans instead of one size fits all1.


Author(s):  
Nancy G. Casanova ◽  
Ting Wang ◽  
Eddie T. Chiang ◽  
Joe G. N. Garcia

This chapter briefly reviews the use of genomewide screening for early detection, treatment, and prevention and the utility of genome-based biomarkers as a tool for precision medicine and its application to population and integrative preventive medicine. Advances in technology have made genomic screening more affordable and widely available, and both our understanding and the value of testing grow as more data is collected. Even more recently, the growing availability of epigenetic testing, methylation and ROS-associated molecular signatures are providing more insight into dynamic aspects of the human genome and how lifestyle and IPM change affect the expression of the genome. Early adoption of precision medicine in oncology offers a model that should be expanded into wider areas of treatment and prevention.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 605-605
Author(s):  
Marco A. Marra ◽  
Martin Krzywinski ◽  
Readman Chiu ◽  
Matthew Field ◽  
Inanc Birol ◽  
...  

Abstract With the aim of identifying and sequencing mutations in follicular lymphoma genomes, we have begun a project to generate at least 24 deeply redundant sequence-ready Bacterial Artificial Clone (BAC) - based whole genome maps, each from a different individual’s lymphoma. BAC-array CGH and Affymetrix whole-genome sampling assays (WGSA) will be used along with the mapping data to identify genomic amplifications and losses in the lymphomas. Results from the mapping and array studies will be used to prioritize BAC clones for sequence analysis. Because each map will span essentially the entire genome of the corresponding lymphoma, we anticipate that essentially all regions of each tumor genome will be represented in easily sequenced BAC clones. This approach facilitates targeted sequencing of genomic regions of interest, including those containing genes relevant to cancer or harboring amplifications or deletions. Our mapping strategy hinges on the successful creation of deeply redundant high quality BAC libraries from primary lymphomas and large scale high throughput restriction enzyme fingerprinting of individual BACs with a version of the technology we used to map the human, mouse, rat and other genomes. The effort is large-scale, and will result in the generation of at least 2.5 million fingerprinted BAC clones over the next three years. Using the fingerprints, we will align the BACs to the reference human genome to assess genome coverage and to identify candidate genome rearrangements. In parallel, we will assemble the fingerprints into genome maps, looking for larger-scale genome variations between the lymphoma maps and the reference genome sequence. To test the feasibility of our approach, we obtained two restriction digest fingerprints from each of 140,000 individual BAC clones. BACs were sampled from a 7-fold redundant BAC library that had been created from genomic DNA purified from a primary follicular lymphoma sample. The fingerprints are being assembled into a clone map with the intent of reconstructing the entire tumor genome. 90,377 fingerprinted clones with unambiguous single alignments to the reference sequence were automatically assembled into 15,538 contigs. Subsequent rounds of semi-automatic contig merging further reduced the number of contigs to 5,433. Only 1,241 clones remained unassembled. We anchored the tumor genome map to the reference human genome sequence by aligning the clone fingerprints to the restriction map computed from the reference sequence assembly. As a result of this, we identified a BAC that captured the canonical t(14;18) translocation characteristic of follicular lymphomas. We sequenced this BAC and confirmed that it contains the expected translocation. Almost 2.6 gigabases (~91%) of the reference genome are represented in the evolving map, with an additional 50,000 clone fingerprints awaiting incorporation into the map assembly. Among these are repeat-rich and other clones that may well harbor genome rearrangements. Additional prioritization of sequencing targets will be undertaken when map construction and analysis of genome copy number alterations are complete.


Author(s):  
Karen H. Miga ◽  
Ting Wang

The reference human genome sequence is inarguably the most important and widely used resource in the fields of human genetics and genomics. It has transformed the conduct of biomedical sciences and brought invaluable benefits to the understanding and improvement of human health. However, the commonly used reference sequence has profound limitations, because across much of its span, it represents the sequence of just one human haplotype. This single, monoploid reference structure presents a critical barrier to representing the broad genomic diversity in the human population. In this review, we discuss the modernization of the reference human genome sequence to a more complete reference of human genomic diversity, known as a human pangenome. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 22 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document