scholarly journals Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions

2005 ◽  
Vol 118 (10) ◽  
pp. 2093-2104 ◽  
Author(s):  
T. Balla
2004 ◽  
Vol 15 (7) ◽  
pp. 3393-3405 ◽  
Author(s):  
Markus Geisler ◽  
Marjolaine Girin ◽  
Sabine Brandt ◽  
Vincent Vincenzetti ◽  
Sonia Plaza ◽  
...  

Previously, the immunophilin-like protein TWD1 from Arabidopsis has been demonstrated to interact with the ABC transporters AtPGP1 and its closest homologue, AtPGP19. Physiological and biochemical investigation of pgp1/pgp19 and of twd1 plants suggested a regulatory role of TWD1 on AtPGP1/AtPGP19 transport activities. To further understand the dramatic pleiotropic phenotype that is caused by loss-of-function mutation of the TWD1 gene, we were interested in other TWD1 interacting proteins. AtMRP1, a multidrug resistance-associated (MRP/ABCC)-like ABC transporter, has been isolated in a yeast two-hybrid screen. We demonstrate molecular interaction between TWD1 and ABC transporters AtMRP1 and its closest homologue, AtMRP2. Unlike AtPGP1, AtMRP1 binds to the C-terminal tetratricopeptide repeat domain of TWD1, which is well known to mediate protein-protein interactions. Domain mapping proved that TWD1 binds to a motif of AtMRP1 that resembles calmodulin-binding motifs; and calmodulin binding to the C-terminus of MRP1 was verified. By membrane fractionation and GFP-tagging, we localized AtMRP1 to the central vacuolar membrane and the TWD1-AtMRP1 complex was verified in vivo by coimmunoprecipitation. We were able to demonstrate that TWD1 binds to isolated vacuoles and has a significant impact on the uptake of metolachlor-GS and estradiol-β-glucuronide, well-known substrates of vacuolar transporters AtMRP1 and AtMRP2.


2020 ◽  
Vol 21 (7) ◽  
pp. 2554 ◽  
Author(s):  
María Lourdes Renart ◽  
Ana Marcela Giudici ◽  
Clara Díaz-García ◽  
María Luisa Molina ◽  
Andrés Morales ◽  
...  

KcsA, a prokaryote tetrameric potassium channel, was the first ion channel ever to be structurally solved at high resolution. This, along with the ease of its expression and purification, made KcsA an experimental system of choice to study structure–function relationships in ion channels. In fact, much of our current understanding on how the different channel families operate arises from earlier KcsA information. Being an integral membrane protein, KcsA is also an excellent model to study how lipid–protein and protein–protein interactions within membranes, modulate its activity and structure. In regard to the later, a variety of equilibrium and non-equilibrium methods have been used in a truly multidisciplinary effort to study the effects of lipids on the KcsA channel. Remarkably, both experimental and “in silico” data point to the relevance of specific lipid binding to two key arginine residues. These residues are at non-annular lipid binding sites on the protein and act as a common element to trigger many of the lipid effects on this channel. Thus, processes as different as the inactivation of channel currents or the assembly of clusters from individual KcsA channels, depend upon such lipid binding.


2018 ◽  
Vol 9 (39) ◽  
pp. 7656-7665 ◽  
Author(s):  
Jordan M. Fletcher ◽  
Katherine A. Horner ◽  
Gail J. Bartlett ◽  
Guto G. Rhys ◽  
Andrew J. Wilson ◽  
...  

Homo- and hetero-dimeric coiled coils as scaffolds for the presentation of α-helical protein-binding motifs.


1992 ◽  
Vol 12 (12) ◽  
pp. 5758-5767
Author(s):  
S Camier ◽  
N Kacherovsky ◽  
E T Young

A second-site mutation that restored DNA binding to ADR1 mutants altered at different positions in the two zinc fingers was identified. This mutation (called IS1) was a conservative change of arginine 91 to lysine in a region amino terminal to the two zinc fingers and known from previous experiments to be necessary for DNA binding. IS1 increased binding to the UAS1 sequence two- to sevenfold for various ADR1 mutants and twofold for wild-type ADR1. The change of arginine 91 to glycine decreased binding twofold, suggesting that this arginine is involved in DNA binding in the wild-type protein. The increase in binding by IS1 did not involve protein-protein interactions between the two ADR1 monomers, nor did it require the presence of the sequences flanking UAS1. However, the effect of IS1 was influenced by the sequence of the first finger, suggesting that interactions between the region amino terminal to the fingers and the fingers themselves could exist. A model for the role of the amino-terminal region based on these results and sequence homologies with other DNA-binding motifs is proposed.


1996 ◽  
Vol 271 (40) ◽  
pp. 24333-24336 ◽  
Author(s):  
Alison J. Davis ◽  
Jonathan T. Butt ◽  
John H. Walker ◽  
Stephen E. Moss ◽  
Debra J. Gawler

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao Cong ◽  
Yang Liu ◽  
Wen Liu ◽  
Xiaowen Liang ◽  
Arthur Laganowsky

2021 ◽  
Vol 478 (11) ◽  
pp. 2035-2050
Author(s):  
Kaare Teilum ◽  
Johan G. Olsen ◽  
Birthe B. Kragelund

With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity — or more so on their multispecificity — arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.


2016 ◽  
Vol 44 (5) ◽  
pp. 1313-1319 ◽  
Author(s):  
Patrick J. Nygren ◽  
John D. Scott

Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex's role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit.


Sign in / Sign up

Export Citation Format

Share Document