The Effect of Cell Population Density on Nutrient Uptake and Cell Metabolism: a Comparative Study of Human Diploid and Heteroploid Cell Lines

1972 ◽  
Vol 10 (2) ◽  
pp. 515-524
Author(s):  
J. B. GRIFFITHS

The possibility that contact inhibition of growth in cultures of human diploid cells is influenced by the effects of cell crowding on nutrient uptake by the cells was investigated. Two human lung cell lines were compared, the diploid line MRC-5 and the heteroploid line L-132. In pre-confluent cultures the ability of these 2 cell types to accumulate amino acids was very similar. Post-confluent L-132 cells showed very little change from the pre-confluent cultures but the ability of MRC-5 cells in post-confluent cultures was greatly reduced. The intracellular concentrations of various amino acids necessary to achieve the maximum rate of protein synthesis were found. These values were identical for sparse and crowded cultures but due to the reduced uptake ability of crowded MRC-5 cells a far higher external amino acid concentration was required in post-confluent cultures. This meant that although amino acids did not become growth-limiting until over 80% utilized in pre-confluent cultures, in post-confluent cultures they became growth-limiting when only 50% utilized. Although protein synthesis was significantly affected by extracellular amino acid concentration and cell crowding, thus contributing towards the effect of contact inhibition of growth, DNA synthesis was shown to be the major metabolic function in contact inhibition. Increased cell density had a very inhibitory effect on DNA synthesis in MRC-5 cultures, but not in L-132 cultures, and this was unaffected by extracellular amino acid and glucose concentration.

1970 ◽  
Vol 6 (3) ◽  
pp. 739-749
Author(s):  
J. B. GRIFFITHS

There are many reports in the literature showing that contact inhibition of growth is affected by the culture medium. A quantitative study of amino acid and glucose uptake by the human diploid cell line, WI-38 was carried out to determine more precisely what effect nutritional factors have on contact inhibition of growth. Eagle's minimal essential medium (MEM) was found to support higher cell yields than Eagle's basal medium (BME) and for growth to continue beyond 96 h a medium change was essential. However, analysis of the used growth media showed that neither amino acids nor glucose were fully depleted after 96 h. The rate of glucose utilization was in the range 65-100µg/mg dry wt./h and this agreed very closely with the results of other authors. The pattern of amino acid uptake also closely resembled that for other cell lines except that the utilization of cystine was higher. The nutritional requirements were further studied as the results from the medium analyses failed to explain the growth-promoting activity of MEM. Daily medium changes greatly increased cell yields even though the medium nutrients were not exhausted. This effect was dependent upon fresh medium being used and the only medium component found to be of importance was the amino acid complement. These results are discussed in relation to the low saturation density of diploid cells in culture and a possible explanation is proposed in terms of differences in the cell membrane between normal and altered cells.


1981 ◽  
Vol 198 (1) ◽  
pp. 53-65 ◽  
Author(s):  
J A Hammer ◽  
D E Rannels

Conditions were defined under which rates of protein synthesis and degradation could be estimated in alveolar macrophages isolated from rabbits by pulmonary lavage and incubated in the presence of plasma concentrations of amino acids and 5.6 mM-glucose. Phenylalanine was validated as suitable precursor for use in these studies: it was not metabolized appreciably, except in the pathways of protein synthesis and degradation; it entered the cells rapidly; it maintained a stable intracellular concentration; and it was incorporated into protein at measurable rates. When extracellular phenylalanine was raised to a concentration sufficient to minimize dilution of the specific radioactivity of the precursor for protein synthesis with amino acid derived from protein degradation, the specific radioactivity of phenylalanyl-tRNA was only 60% of that of the extracellular amino acid. This relationship was unchanged in cells where proteolysis increased 2.5-fold after uptake and degradation of exogenous bovine serum albumin. In contrast, albumin prevented the decrease in phenylalanine incorporation observed in macrophages deprived of an exogenous source of amino acids. These observations suggested that macrophages preferentially re-utilized amino acids derived from the degradation of endogenous, but not from exogenous (albumin), protein. However, when the extracellular supply of amino acids was restricted, substrates derived from albumin catabolism could support the protein-synthetic pathway.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 118-119
Author(s):  
Teresa A Davis ◽  
Marko Rudar ◽  
Jane Naberhuis ◽  
Agus Suryawan ◽  
Marta Fiorotto

Abstract Livestock animals are important dual-purpose models that benefit both agricultural and biomedical research. The neonatal pig is an appropriate model for the human infant to assess long-term effects of early life nutrition on growth and metabolic outcomes. Previously we have demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. The objective of this study was to determine whether reduced sensitivity to insulin and/or amino acids drives this blunted response. Pigs were delivered by caesarean section at preterm (PT, 103 d gestation) or at term (T, 112 d gestation) and fed parenterally for 4 d. On day 4, pigs were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps for 120 min, yielding six treatments: PT-FAST (n = 7), PT-INS (n = 9), PT-AA (n = 9), T-FAST (n = 8), T-INS (n = 9), and T-AA (n = 9). A flooding dose of L-[4-3H]Phe was injected into pigs 30 min before euthanasia. Birth weight and relative body weight gain were lower in PT than T pigs (P < 0.001). Plasma insulin concentration was increased from ~3 to ~100 µU/mL in INS compared to FAST and AA pigs (P < 0.001); plasma BCAA concentration was increased from ~250 to ~1,000 µmol/L in AA compared to FAST and INS pigs (P < 0.001). Despite achieving similar insulin and amino acid levels, longissimus dorsi AKT phosphorylation, mechanistic target of rapamycin (mTOR)·Rheb abundance, mTOR activation, and protein synthesis were lower in PT-INS than T-INS pigs (Table 1). Although amino-acid induced dissociation of Sestrin2 from GATOR2 was not affected by prematurity, mTOR·RagA abundance, mTOR·RagC abundance, mTOR activation, and protein synthesis were lower in PT-AA than T-AA pigs. The impaired capacity of premature skeletal muscle to respond to insulin or amino acids and promote protein synthesis likely contributes to reduced lean mass accretion. Research was supported by NIH and USDA.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


1971 ◽  
Vol 121 (5) ◽  
pp. 817-827 ◽  
Author(s):  
R. C. Hider ◽  
E. B. Fern ◽  
D. R. London

1. The kinetics of radioactive labelling of extra- and intra-cellular amino acid pools and protein of the extensor digitorum longus muscle were studied after incubations with radioactive amino acids in vitro. 2. The results indicated that an extracellular pool could be defined, the contents of which were different from those of the incubation medium. 3. It was concluded that amino acids from the extracellular pool, as defined in this study, were incorporated directly into protein.


1973 ◽  
Vol 51 (12) ◽  
pp. 933-941 ◽  
Author(s):  
Njanoor Narayanan ◽  
Jacob Eapen

The effect of cycloheximide in vitro and in vivo on the incorporation of labelled amino acids into protein by muscles, liver, kidneys, and brain of rats and pigeons was studied. In vitro incorporation of amino acids into protein by muscle microsomes, myofibrils, and myofibrillar ribosomes was not affected by cycloheximide. In contrast, administration of the antibiotic into intact animals at a concentration of 1 mg/kg body weight resulted in considerable inhibition of amino acid incorporation into protein by muscles, liver, kidneys, and brain. This inhibition was observed in all the subcellular fractions of these tissues during a period of 10–40 min after the administration of the precursor. Tissue homogenates derived from in vivo cycloheximide-treated animals did not show significant alteration in in vitro amino acid incorporation with the exception of brain, which showed a small but significant enhancement.


1963 ◽  
Vol 53 (4) ◽  
pp. 681-713 ◽  
Author(s):  
R. G. Fennah

The feeding of the cacao thrips, Selenothrips rubrocinctus (Giard), on cashew, Anacardium occidentale, one of its host plants in Trinidad, West Indies, is considered in relation to the annual period of maximum population increase on this host and to the choice of feeding sites on individual leaves. On trees observed for three years, populations regularly increased during the dry season, from a low level in December and January to a peak in April or May, and then rapidly declined during the wet season. Even when thrips were most abundant, some trees were free from attack, and this could not be attributed to protective morphological features, to specific repellent substances in the leaf, or to chance. S. rubrocinctus was found to feed on leaves that were subjected to water-stress and to breed only on debilitated trees: the evidence suggested that the adequacy of its supply of nutrients depends on the induction of suitable metabolic conditions within the leaf by water-stress.Both nymphs and adults normally feed on the lower, stomata-bearing surface of the leaf, but in a very humid atmosphere only a weak preference is shown for this surface and if, under natural conditions, it is exposed to insolation by inversion of the leaf, the insects migrate to the other surface. Since the thrips were shown to be indifferent to bodily posture, the observation suggests that their behaviour is governed primarily by avoidance of exposure to undue heat or dryness and only secondarily by the attractiveness of the stomata-bearing surface.Leaves of cashew tend not to become infested while still immature, and become most heavily infested, if at all, soon after they have hardened. Breeding does not occur on senescent leaves. The positions of feeding thrips are almost random on leaves under abnormal water-stress, but otherwise conform to certain patterns that mainly develop in fixed sequence. On reversal of an undetached leaf and consequent transfer of thrips from one surface to the other, there is no appreciable change in their distribution pattern or the apparent acceptability of the substrate. Changes of pattern were readily induced by injury to the plant during a period of water-stress and less easily, or not at all, when water-stress was low. Injury of areas of the leaf by heat was followed by their colonisation by thrips, and partial severance of branches by increased attack on their leaves.Leaves detached from uninfested trees invariably became acceptable for feeding within four hours. During this period, leaf water-content declined and the ratios of soluble-carbohydrate content and α-amino acids to fresh-leaf weight fell slightly and rose considerably, respectively. In the field, the latter ratio was invariably higher for infested than for uninfested leaf tissue, even on portions of the same leaf. If the nutrient value of leaf tissue is determined by the rate at which α-amino acids are extractable through a stylet puncture, the observed change in acceptability for feeding following plucking may be accounted for by the increase in α-amino-acid concentration. Feeding that is restricted on any one tree to the margins of local leaf injuries during prolonged high water-stress and totally absent when stress is low can be correlated with an α-amino-acid content in the living marginal tissue that is high or low, respectively. The ability of thrips to establish themselves and breed on leaves of a particular tree in the dry season and their failure to do so on leaves of the same tree in the wet season conforms with the greater or less amino-acid concentration occurring in the leaf at these respective times.


1994 ◽  
Vol 267 (6) ◽  
pp. E877-E885 ◽  
Author(s):  
I. Tauveron ◽  
D. Larbaud ◽  
C. Champredon ◽  
E. Debras ◽  
S. Tesseraud ◽  
...  

The experiment was carried out to clarify the roles of insulin and amino acids on protein synthesis in fed lactating goats (30 days postpartum). Protein synthesis in the liver and various skeletal muscles was assessed after an intravenous injection of a large dose of unlabeled valine containing a tracer dose of L-[2,3,4-3H]valine. The animals were divided into three groups. Group I was infused with insulin (1.7 mumol/min) for 2.5 h under glucose, potassium, and amino acid replacement. Group A was infused with an amino acid mixture to create stable hyperaminoacidemia for 2.5 h. Group C animals were controls. The fractional synthesis rates (FSR) were 31.5 +/- 2.2, 6.5 +/- 0.4, 4.3 +/- 0.8, 4.0 +/- 1.2, 3.9 +/- 1.2, and 3.6 +/- 0.4%/day (SD) in liver, masseter, diaphragm, anconeus, semitendinosus, and longissimus dorsi, respectively, for group C. Neither hyperinsulinemia in group I nor hyperaminoacidemia in group A had not affected by hyperinsulinemia but was stimulated by hyperaminoacidemia (+30%, P < 0.05). In contrast to previous experiments in which a labeled amino acid was constantly infused, this study revealed a stimulating effect of amino acids on protein synthesis in the liver but not in skeletal muscles. As previously observed in studies with the constant-infusion method, insulin had no effect on protein synthesis.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


Sign in / Sign up

Export Citation Format

Share Document