Endothelial cell attachment and spreading on human tenascin is mediated by alpha 2 beta 1 and alpha v beta 3 integrins

1993 ◽  
Vol 105 (4) ◽  
pp. 1001-1012 ◽  
Author(s):  
P. Sriramarao ◽  
M. Mendler ◽  
M.A. Bourdon

Human umbilical vein endothelial cells were found to attach and partially spread on human tenascin. The attachment of endothelial cells to tenascin results in elongated cells with interconnecting processes and is distinct from the flattened appearance of endothelial cells on fibronectin, collagen, vitronectin or laminin substrata, suggesting a role for tenascin in modulating cell adhesion and motility. Endothelial attachment to tenascin was partially inhibitable by the SRRGDMS peptide derived from human tenascin and completely inhibitable by anti-integrin antibodies to alpha 2 beta 1 and alpha v beta 3. Endothelial cell attachment to tenascin could be inhibited up to 80% with anti-alpha 2 and anti-beta 1 monoclonal antibodies P1E6 and P4C10, respectively, and this was associated with a complete loss in cell spreading. In contrast, pretreatment of endothelial cells with the anti-alpha v beta 3 monoclonal antibody LM609, resulted in a 35% inhibition in cell attachment but did not alter cell spreading. In combination the anti-alpha 2 and anti-alpha v beta 3 antibodies, could completely abrogate cell spreading and attachment to tenascin-coated surfaces. Affinity purification of 125I-labeled endothelial cell extract on a tenascin matrix column followed by immunoprecipitation with monoclonal antibodies to different integrin alpha and beta subunits resulted in the identification of alpha 2 beta 1 and alpha v beta 3 integrins, respectively, as tenascin binding receptors. Collagen affinity-purified alpha 2 beta 1 receptor from endothelial cells bound not only to collagen and laminin but also to tenascin in a radio receptor binding assay. The results demonstrate that alpha 2 beta 1 and alpha v beta 3 mediate distinct endothelial cell interactions with tenascin; cell spreading and cell binding, respectively. Binding by alpha v beta 3 is mediated by the SRRGDMS site on tenascin, whereas the alpha 2 beta 1 binding site remains undefined. The interaction of alpha 2 beta 1 and alpha v beta 3 with tenascin may be regulated in a cell type-specific manner as evidenced by the binding of endothelial cell alpha 2 beta 1 and alpha v beta 3 to tenascin, and the lack of binding by the same receptors on osteosarcoma MG63 to tenascin.

1995 ◽  
Vol 74 (02) ◽  
pp. 764-769 ◽  
Author(s):  
Mei-Chi Chang ◽  
Bih-Ru Wang ◽  
Tur-Fu Huang

SummaryWe investigated the adhesion of human umbilical vein endothelial cells (HUVECs) to fibrin(ogen) molecule of varying structure for identifying sites that mediate cell attachment. Fibrin was prepared either with ancrod which liberates only FPA from fibrinogen, or with thrombin, which liberates both FPA and FPB. Both fibrin preparations equally supported HUVEC attachment. GRGDS, RGD-containing peptides of snake venoms, and monoclonal antibodies against αvβ3 (23C6 and 7E3) inhibited the attachment of HUVECs to fibrin by 65–75%. In contrast, the attachment of HUVECs to fibrinogen was less effective and was almost completely inhibited by both RGD-containing peptides and by antibodies against integrin αvβ3 (85-95% inhibition). The C-terminal dodecapeptide of fibrinogen γ chain (residues 400–411) inhibited minimally the attachment of HUVECs to fibrin. Additionally, the binding of RGD-containing snake venom peptides to HUVECs was both RGD- and divalent-cation-dependent. The IC50s for inhibition of HUVEC attachment to fibrin were 0.09 μM (rhodostomin), 1.54 μM (trigramin) and 1.64 μM (halysin).These results indicate that fibrin mediated support of cell attachment is independent of the cleavage of FPB from fibrinogen. HUVEC attachment to fibrinogen was almost completely inhibited by RGD-containing peptides and by antibodies against αvβ3. In contrast, the attachment to fibrin was partially resistant to RGD-containing peptides and to the monoclonal antibodies against integrin αvβ3. However, αvβ3 is the major receptor mediating HUVEC attachment to fibrin.


1997 ◽  
Vol 78 (05) ◽  
pp. 1392-1398 ◽  
Author(s):  
A Schneider ◽  
M Chandra ◽  
G Lazarovici ◽  
I Vlodavsky ◽  
G Merin ◽  
...  

SummaryPurpose: Successful development of a vascular prosthesis lined with endothelial cells (EC) may depend on the ability of the attached cells to resist shear forces after implantation. The present study was designed to investigate EC detachment from extracellular matrix (ECM) precoated vascular prostheses, caused by shear stress in vitro and to test the performance of these grafts in vivo. Methods: Bovine aortic endothelial cells were seeded inside untreated polytetrafluoro-ethylene (PTFE) vascular graft (10 X 0.6 cm), PTFE graft precoated with fibronectin (FN), or PTFE precoated with FN and a naturally produced ECM (106 cells/graft). Sixteen hours after seeding the medium was replaced and unattached cells counted. The strength of endothelial cell attachment was evaluated by subjecting the grafts to a physiologic shear stress of 15 dynes/cm2 for 1 h. The detached cells were collected and quantitated. PTFE or EC preseeded ECM coated grafts were implanted in the common carotid arteries of dogs. Results: While little or no differences were found in the extent of endothelial cell attachment to the various grafts (79%, 87% and 94% of the cells attached to PTFE, FN precoated PTFE, or FN+ECM precoated PTFE, respectively), the number of cells retained after a shear stress was significanly increased on ECM coated PTFE (20%, 54% and 85% on PTFE, FN coated PTFE, and FN+ECM coated PTFE, respectively, p <0.01). Implantation experiments in dogs revealed a significant increase in EC coverage and a reduced incidence of thrombus formation on ECM coated grafts that were seeded with autologous saphenous vein endothelial cells prior to implantation. Conclusion: ECM coating significantly increased the strength of endothelial cell attachment to vascular prostheses subjected to shear stress. The presence of adhesive macromolecules and potent endothelial cell growth promoting factors may render the ECM a promising substrate for vascular prostheses.


1990 ◽  
Vol 95 (2) ◽  
pp. 255-262
Author(s):  
W.D. Norris ◽  
J.G. Steele ◽  
G. Johnson ◽  
P.A. Underwood

The initial attachment and spreading of endothelial cells from human umbilical artery onto type I collagen, type IV collagen or gelatin substrata was shown to be enhanced by inclusion of serum in the culture medium. To test whether this serum effect was mediated by adsorption of serum fibronectin or vitronectin onto the collagen, these adhesive glycoproteins were selectively removed from the serum prior to addition to the culture medium. The stimulatory effect of serum on human endothelial cell spreading on collagens I and IV was also observed with serum from which either fibronectin or vitronectin, or both, had been selectively removed. The stimulatory effect for cell spreading on gelatin was diminished by selective removal of serum fibronectin, but unaffected by removal of vitronectin. Human endothelial cell attachment and spreading onto tissue culture plastic was abolished by removal of vitronectin from the serum in the culture medium. These results emphasize that the native structure of collagens is required for serum-enhancement of human endothelial cell attachment and spreading on native collagen types I and IV, and show that on these substrata the stimulated adhesion and spreading are not dependent upon adsorption of serum fibronectin or vitronectin onto the collagen substratum.


1993 ◽  
Vol 121 (1) ◽  
pp. 163-170 ◽  
Author(s):  
D I Leavesley ◽  
M A Schwartz ◽  
M Rosenfeld ◽  
D A Cheresh

Human umbilical vein endothelial cell attachment, spreading and migration on collagen and vitronectin are mediated by integrins alpha 2 beta 1 and alpha v beta 3, respectively, and these events take place in the absence of cytokines, growth factors, or chemoattractants. Cell attachment and spreading on these ligands occur in the absence of extracellular calcium, as does migration on collagen. In contrast, vitronectin-mediated migration is absolutely dependent on the presence of extracellular calcium. Cell contact with immobilized vitronectin or anti-alpha v beta 3 mAbs promotes a measurable rise in [Ca2+]i which requires an extracellular calcium source, whereas collagen, or anti-alpha 2 beta 1 mAbs fail to promote this signaling event. In fact, vitronectin-mediated migration and the rise in intracellular calcium showed the same dose dependence on extracellular calcium. While vitronectin and collagen differ in their ability to induce a calcium influx both ligands or antibodies to their respective integrins promote an equivalent increase in intracellular pH consistent with activation of the Na/H antiporter an event independent of extracellular calcium. These results support two salient conclusions. Firstly, collagen and vitronectin, through their respective integrins, promote distinct intracellular signaling events. Secondly, the alpha v beta 3 specific influx of calcium is not required for cell spreading yet appears to facilitate cellular migration on vitronectin.


1995 ◽  
Vol 73 (02) ◽  
pp. 309-317 ◽  
Author(s):  
Dorothy A Beacham ◽  
Miguel A Cruz ◽  
Robert I Handin

SummaryIntroduction of single amino acid substitutions into the C-terminal Arg-Gly-Asp-Ser (RGDS) site of von Willebrand Factor, referred to as RGD mutant vWF, selectively abrogated vWF binding to platelet glycoprotein IIb/IIIa (GpIIb/IIIa, αIIbβ3 and abolished human umbilical vein endothelial cell (HUVEC) spreading, but not attachment, to RGD mutant vWF (Beacham, D. A., Wise, R. J., Turci, S. M. and Handin, R. I. 1992. J. Biol. Chem. 167, 3409-3415). These results suggested that in addition to the vitronectin receptor (VNR, αvβ3), a second endothelial membrane glycoprotein can mediate HUVEC adhesion to vWF. HUVEC attachment to wild-type (WT) and RGD-mutant vWF was reduced by two proteins known to block the vWF-platelet glycoprotein Ib/IX (GpIb/IX) interaction, the monoclonal antibody AS-7 and the recombinant polypeptide, vWF-A1. The addition of cytochalasin B or DNase I to disrupt potential GPIbα-cytoskeletal interactions enhanced the immunoprecipitation of endothelial GPIbα, caused HUVEC to round up, and increased HUVEC adhesion to RGD mutant vWF. These results indicate that while the VNR is the primary adhesion receptor for vWF, endothelial GPIbα can mediate HUVEC attachment to vWF. GpIb-dependent attachment could contribute to HUVEC adhesion under conditions when cell surface expression of the VNR is downregulated, and VNR-dependent adhesion is reduced.


1987 ◽  
Author(s):  
K T Preissner ◽  
E Anders ◽  
G Müller-Berghaus

The interaction of the complement inhibitor S protein, which is identical to the serum spreading factor, vitronectin, with cultured human endothelial cells of macro- and microvas- cular origin was investigated. Purified S protein, coated for 2 h on polystyrene petri dishes, induced concentration- and time-dependent attachment and spreading of human umbilical vein endothelial cells (HUVEC) as well as human omental tissqe microvasular endothelial cells (HOTMEC) at 37°C. With 3 × 105 cells/ml (final concentration) more than 50% of the cells attached within 2 h incubation at 0.3 - 3 μg/ml S protein. The effect of S protein was specific, since only monospecific antibodies against S protein prevented attachment of cells, while antibodies against fibronectin, fibrinogen or von Wille-brand factor were uneffective. The pentapeptide Gly-Arg-Gly-Asp-Ser, which contains the cell-attachment site of these adhesive proteins including S protein, inhibited the activity of S protein to promote attachment of endothelial cells in a concentration-dependent fashion; at 200 μM peptide, less than 10% of the cells became attached. Direct binding of S protein to HUVEC and HOTMEC was studied with cells in suspension at a concentration of 1 × 106 cells/ml in the presence of 1% (w/v) human serum albumin and 1 mM CaCl2 and was maximal after 120 min. Both cell types bound S protein in a concentration-dependent fashion with an estimated dissociation constant KD=0.2pM. More than 80% of bound radiolabelled S protein was displaced by unlabelled S protein, whereas binding was reduced to about 50% by the addition in excess of either fibronectin, fibrinogen, von Willebrand factor or the pentapeptide. These findings provide evidence for the specific association of S protein with endothelial cells, ultimately leading to attachment and spreading of cells. Although the promotion of attachment was highly specific for S protein, other adhesive proteins than S protein, also known to associate with endothelial cells, may in part compete with direct S protein binding.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


2002 ◽  
Vol 115 (12) ◽  
pp. 2475-2484 ◽  
Author(s):  
Valérie Vouret-Craviari ◽  
Christine Bourcier ◽  
Etienne Boulter ◽  
Ellen Van Obberghen-Schilling

Soluble mediators such as thrombin and sphingosine-1-phosphate regulate morphological changes in endothelial cells that affect vascular permeability and new blood vessel formation. Although these ligands activate a similar set of heterotrimeric G proteins, thrombin causes cell contraction and rounding whereas sphingosine-1-phosphate induces cell spreading and migration. A functional requirement for Rho family GTPases in the cytoskeletal responses to both ligands has been established, yet the dynamics of their regulation and additional signaling mechanisms that lead to such opposite effects remain poorly understood. Using a pull-down assay to monitor the activity of Rho GTPases in human umbilical vein endothelial cells, we find significant temporal and quantitative differences in RhoA and Rac1 activation. High levels of active RhoA rapidly accumulate in cells in response to thrombin whereas Rac1 is inhibited. In contrast, sphingosine-1-phosphate addition leads to comparatively weak and delayed activation of RhoA and it activates Rac1. In addition, we show here that sphingosine-1-phosphate treatment activates a Src family kinase and triggers recruitment of the F-actin-binding protein cortactin to sites of actin polymerization at the rim of membrane ruffles. Both Src and Rac pathways are essential for lamellipodia targeting of cortactin. Further, Src plays a determinant role in sphingosine-1-phosphate-induced cell spreading and migration. Taken together these data demonstrate that the thrombin-induced contractile and immobile phenotype in endothelial cells reflects both robust RhoA activation and Rac inhibition, whereas Src- and Rac-dependent events couple sphingosine-1-phosphate receptors to the actin polymerizing machinery that drives the extension of lamellipodia and cell migration.


Sign in / Sign up

Export Citation Format

Share Document