Modulation of alpha-actinin levels affects cell motility and confers tumorigenicity on 3T3 cells

1994 ◽  
Vol 107 (7) ◽  
pp. 1773-1782 ◽  
Author(s):  
U. Gluck ◽  
A. Ben-Ze'ev

alpha-Actinin is an abundant actin crosslinking protein, also localized at adherens type junctions. In adhesion plaques, alpha-actinin can link the actin filaments to integrin via vinculin and talin, or directly by binding to the cytoplasmic domain of beta 1-integrin. The expression of alpha-actinin is rapidly elevated in growth-activated quiescent cells, and is reduced in SV40-transformed 3T3 cells and various differentiating cell types (reviewed by Gluck, U., Kwiatkowski, D. J. and Ben-Ze'ev, A. Proc. Nat. Acad. Sci. USA 90, 383–387, 1993). To study the effect of changes in alpha-actinin levels on cell behavior, alpha-actinin expression was elevated in 3T3 cells by transfection with a full-length human nonmuscle alpha-actinin cDNA. To suppress alpha-actinin levels, 3T3 cells were transfected with an antisense alpha-actinin cDNA construct. Cells overexpressing alpha-actinin by 40–60% displayed a significant reduction in cell motility, as demonstrated by their slower locomotion into an artificial wound, and by forming shorter phagokinetic tracks on colloidal gold-coated substrata. 3T3 cells in which the expression of alpha-actinin was reduced to 25–60% of control levels, after antisense alpha-actinin transfection, had an increased cell motility. Moreover, such alpha-actinin-deficient 3T3 cells formed tumors upon injection into nude mice. The results demonstrate that modulations in alpha-actinin expression can affect, in a major way, the motile and tumorigenic properties of cells, and support the view that decreased alpha-actinin expression could be a common regulatory pathway to malignant transformation of 3T3 cells.

1992 ◽  
Vol 119 (2) ◽  
pp. 367-377 ◽  
Author(s):  
J A Theriot ◽  
T J Mitchison

We have investigated the dynamic behavior of actin in fibroblast lamellipodia using photoactivation of fluorescence. Activated regions of caged resorufin (CR)-labeled actin in lamellipodia of IMR 90 and MC7 3T3 fibroblasts were observed to move centripetally over time. Thus in these cells, actin filaments move centripetally relative to the substrate. Rates were characteristic for each cell type; 0.66 +/- 0.27 microns/min in IMR 90 and 0.36 +/- 0.16 microns/min in MC7 3T3 cells. In neither case was there any correlation between the rate of actin movement and the rate of lamellipodial protrusion. The half-life of the activated CR-actin filaments was approximately 1 min in IMR 90 lamellipodia, and approximately 3 min in MC7 3T3 lamellipodia. Thus continuous filament turnover accompanies centripetal movement. In both cell types, the length of time required for a section of the actin meshwork to traverse the lamellipodium was several times longer than the filament half-life. The dynamic behavior of the dorsal surface of the cell was also observed by tracking lectin-coated beads on the surface and phase-dense features within lamellipodia of MC7 3T3 cells. The movement of these dorsal features occurred at rates approximately three times faster than the rate of movement of the underlying bulk actin cytoskeleton, even when measured in the same individual cells. Thus the transport of these dorsal features must occur by some mechanism other than simple attachment to the moving bulk actin cytoskeleton.


Author(s):  
Ellen Holm Nielsen

In secretory cells a dense and complex network of actin filaments is seen in the subplasmalemmal space attached to the cell membrane. During exocytosis this network is undergoing a rearrangement facilitating access of granules to plasma membrane in order that fusion of the membranes can take place. A filamentous network related to secretory granules has been reported, but its structural organization and composition have not been examined, although this network may be important for exocytosis.Samples of peritoneal mast cells were frozen at -70°C and thawed at 4°C in order to rupture the cells in such a gentle way that the granule membrane is still intact. Unruptured and ruptured cells were fixed in 2% paraformaldehyde and 0.075% glutaraldehyde, dehydrated in ethanol. For TEM (transmission electron microscopy) cells were embedded in Lowicryl K4M at -35°C and for SEM (scanning electron microscopy) they were placed on copper blocks, critical point dried and coated. For immunoelectron microscopy ultrathin sections were incubated with monoclonal anti-actin and colloidal gold labelled IgM. Ruptured cells were also placed on cover glasses, prefixed, and incubated with anti-actin and colloidal gold labelled IgM.


1989 ◽  
Vol 109 (4) ◽  
pp. 1711-1723 ◽  
Author(s):  
M S Tilney ◽  
L G Tilney ◽  
R E Stephens ◽  
C Merte ◽  
D Drenckhahn ◽  
...  

The sensory epithelium of the chick cochlea contains only two cell types, hair cells and supporting cells. We developed methods to rapidly dissect out the sensory epithelium and to prepare a detergent-extracted cytoskeleton. High salt treatment of the cytoskeleton leaves a "hair border", containing actin filament bundles of the stereocilia still attached to the cuticular plate. On SDS-PAGE stained with silver the intact epithelium is seen to contain a large number of bands, the most prominent of which are calbindin and actin. Detergent extraction solubilizes most of the proteins including calbindin. On immunoblots antibodies prepared against fimbrin from chicken intestinal epithelial cells cross react with the 57- and 65-kD bands present in the sensory epithelium and the cytoskeleton. It is probable that the 57-kD is a proteolytic fragment of the 65-kD protein. Preparations of stereocilia attached to the overlying tectorial membrane contain the 57- and 65-kD bands. A 400-kD band is present in the cuticular plate. By immunofluorescence, fimbrin is detected in stereocilia but not in the hair borders after salt extraction. The prominent 125 A transverse stripping pattern characteristic of the actin cross-bridges in a bundle is also absent in hair borders suggesting fimbrin as the component that gives rise to the transverse stripes. Because the actin filaments in the stereocilia of hair borders still remain as compact bundles, albeit very disordered, there must be an additional uncharacterized protein besides fimbrin that cross-links the actin filaments together.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mairim Alexandra Solis ◽  
Ying-Hui Chen ◽  
Tzyy Yue Wong ◽  
Vanessa Zaiatz Bittencourt ◽  
Yen-Cheng Lin ◽  
...  

Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.


1985 ◽  
Vol 5 (2) ◽  
pp. 419-421
Author(s):  
K M Zezulak ◽  
H Green

During the differentiation of preadipose 3T3 cells into adipose cells, the mRNAs for three proteins increase strikingly in abundance. To determine the degree of cell-type specificity in the expression of these mRNAs, we estimated their abundances in several nonadipose tissues of the mouse. None of these mRNAs was strictly confined to adipocytes, but the ensemble of three mRNAs was rather specific to adipocytes. Insofar as is revealed by these three markers, the distinctive phenotype of adipocytes is the result of the enhanced expression of a number of genes, none of which is completely silent in all other cell types.


1987 ◽  
Vol 7 (2) ◽  
pp. 639-649
Author(s):  
K Nishikura ◽  
J M Murray

Mouse 3T3 cells were transformed with an antisense c-fos gene fused to a mouse mammary tumor virus promoter. In transformants that integrated a large number of antisense c-fos sequences, the usual large increase in c-fos mRNA and protein following stimulation of quiescent cells by platelet-derived growth factor was blocked in the presence of dexamethasone. These cells subsequently also failed to show the stimulation of DNA synthesis normally induced by platelet-derived growth factor. Appropriate expression of c-fos appears to be a prerequisite for reentry of quiescent cells into the cell cycle.


1999 ◽  
Vol 112 (17) ◽  
pp. 2937-2946
Author(s):  
N.A. Hotchin ◽  
A.G. Kidd ◽  
H. Altroff ◽  
H.J. Mardon

Fibronectins are widely expressed extracellular matrix ligands that are essential for many biological processes. Fibronectin-induced signaling pathways are elicited in diverse cell types when specific integrin receptors bind to the ninth and tenth FIII domains, FIII9-10. Integrin-mediated signal transduction involves activation of signaling pathways of the growth factor-dependent Ras-related small GTP-binding proteins Rho and Rac, and phosphorylation of focal adhesion kinase. We have dissected the requirement of FIII9 and FIII10 for Rho and Rac activity and phosphorylation of focal adhesion kinase in BHK fibroblasts and Swiss 3T3 cells. We demonstrate that FIII10 supports cell attachment but does not induce phosphorylation of focal adhesion kinase. In Swiss 3T3 cells, growth factor-independent phosphorylation of focal adhesion kinase and downstream adhesion events are dependent upon the presence of FIII9 in the intact FIII9-10 pair, whereas FIII10-mediated focal adhesion kinase phosphorylation requires a synergistic signal from growth factors. Furthermore, FIII10 is able to elicit cellular responses mediated by Rho, but not Rac, whereas FIII9-10 can elicit both Rho- and Rac-mediated responses. We propose that activation of specific integrin subunits by the FIII10 and FIII9-10 ligands elicits distinct signaling events. This may represent a general molecular mechanism for activation of receptor-specific signaling pathways by a multi-domain ligand.


2001 ◽  
Vol 114 (1) ◽  
pp. 119-129 ◽  
Author(s):  
G. Segal ◽  
W. Lee ◽  
P.D. Arora ◽  
M. McKee ◽  
G. Downey ◽  
...  

In physiological conditions, collagen degradation by fibroblasts occurs primarily via phagocytosis, an intracellular pathway that is thought to require collagen receptors and actin assembly for fibril internalization and degradation. Currently it is unclear which specific steps of collagen phagocytosis in fibroblasts involve actin filament assembly. As studies of phagocytosis in fibroblasts are complicated by the relatively slow rate of particle internalization compared to professional phagocytes, we have examined the role of collagen receptors and actin only in the initial collagen binding step. Prior to the binding of collagen-coated fluorescent beads by human gingival fibroblasts, a cell type that is avidly phagocytic in vitro, cells were treated with cytochalasin D (actin filament barbed-end capping) or swinholide A (actin dimer sequestering and severing) or latrunculin B (actin monomer sequestering). Bead binding and immunostaining of (alpha)(2)(beta)(1) and (alpha)(3)(beta)(1) integrin collagen receptors were measured by flow cytometry. After 1–3 hours of coincubation with beads, cytochalasin D or swinholide A eliminated actin filaments stained by rhodamine-phalloidin and inhibited collagen bead binding (reductions of 25% and 50%, respectively), possibly because of cell rounding and restricted interactions with beads. In contrast, latrunculin enhanced binding dose-dependently over controls (twofold at 1 microM) and induced the formation of brightly staining aggregates of actin and the retention of long cytoplasmic extensions. Latrunculin also reduced surface (beta)(1), (alpha)(2) and (alpha)(3) integrin staining up to 40% in bead-free and bead-loaded cells, indicating that latrunculin enhanced collagen receptor internalization. As determined by fluorescence recovery after photobleaching, latrunculin increased the mobility of surface-bound (beta)(1) integrin. The stimulatory effect of latrunculin on collagen bead binding was reduced to control levels by treatment with a (beta)(1) integrin inactivating antibody while a (beta)(1) integrin blocking antibody abrogated both bead binding and the latrunculin-induced stimulation. Immunoblotting of bead-associated proteins showed that latrunculin completely eliminated binding of (beta)-actin to collagen beads but did not affect (beta)(1) integrin binding. These data indicate that latrunculin-induced sequestration of actin monomers facilitates the disengagement of actin from (beta)(1) integrin receptors, increases collagen bead binding and enhances collagen receptor mobility. We suggest that these alterations increase the probability of adhesive bead-to-cell interactions.


Sign in / Sign up

Export Citation Format

Share Document