Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts

2001 ◽  
Vol 114 (1) ◽  
pp. 119-129 ◽  
Author(s):  
G. Segal ◽  
W. Lee ◽  
P.D. Arora ◽  
M. McKee ◽  
G. Downey ◽  
...  

In physiological conditions, collagen degradation by fibroblasts occurs primarily via phagocytosis, an intracellular pathway that is thought to require collagen receptors and actin assembly for fibril internalization and degradation. Currently it is unclear which specific steps of collagen phagocytosis in fibroblasts involve actin filament assembly. As studies of phagocytosis in fibroblasts are complicated by the relatively slow rate of particle internalization compared to professional phagocytes, we have examined the role of collagen receptors and actin only in the initial collagen binding step. Prior to the binding of collagen-coated fluorescent beads by human gingival fibroblasts, a cell type that is avidly phagocytic in vitro, cells were treated with cytochalasin D (actin filament barbed-end capping) or swinholide A (actin dimer sequestering and severing) or latrunculin B (actin monomer sequestering). Bead binding and immunostaining of (alpha)(2)(beta)(1) and (alpha)(3)(beta)(1) integrin collagen receptors were measured by flow cytometry. After 1–3 hours of coincubation with beads, cytochalasin D or swinholide A eliminated actin filaments stained by rhodamine-phalloidin and inhibited collagen bead binding (reductions of 25% and 50%, respectively), possibly because of cell rounding and restricted interactions with beads. In contrast, latrunculin enhanced binding dose-dependently over controls (twofold at 1 microM) and induced the formation of brightly staining aggregates of actin and the retention of long cytoplasmic extensions. Latrunculin also reduced surface (beta)(1), (alpha)(2) and (alpha)(3) integrin staining up to 40% in bead-free and bead-loaded cells, indicating that latrunculin enhanced collagen receptor internalization. As determined by fluorescence recovery after photobleaching, latrunculin increased the mobility of surface-bound (beta)(1) integrin. The stimulatory effect of latrunculin on collagen bead binding was reduced to control levels by treatment with a (beta)(1) integrin inactivating antibody while a (beta)(1) integrin blocking antibody abrogated both bead binding and the latrunculin-induced stimulation. Immunoblotting of bead-associated proteins showed that latrunculin completely eliminated binding of (beta)-actin to collagen beads but did not affect (beta)(1) integrin binding. These data indicate that latrunculin-induced sequestration of actin monomers facilitates the disengagement of actin from (beta)(1) integrin receptors, increases collagen bead binding and enhances collagen receptor mobility. We suggest that these alterations increase the probability of adhesive bead-to-cell interactions.

1991 ◽  
Vol 261 (5) ◽  
pp. C882-C888 ◽  
Author(s):  
H. F. Cantiello ◽  
J. L. Stow ◽  
A. G. Prat ◽  
D. A. Ausiello

The functional role of the cytoskeleton in the control of ion channel activity is unknown. In the present study, immunocolocalization of Na+ channels with specific antibodies and fluorescein isothiocyanate-phalloidin to stain the cortical cytoskeleton indicates that actin is always present in close proximity to apical Na+ channels in A6 cells. The patch-clamp technique was used to assess the effect of cortical actin networks on apical Na+ channels in these A6 epithelial cells. The actin filament disrupter, cytochalasin D (5 micrograms/ml), induced Na+ channel activity in cell-attached patches within 5 min of addition. Cytochalasin D also induced and/or increased Na+ channel activity in 90% of excised patches tested within 2 min. Addition of short actin filaments (greater than 5 microM) to excised patches also induced channel activity. This effect was enhanced by addition of ATP and/or cytochalasin D. The effect of actin on Na+ channel activity was reversed by addition of the G actin-binding protein DNase I or completely prevented by treatment of the excised patches with this enzyme. Addition of the actin-binding protein, filamin, reversibly inhibited both spontaneous and actin-induced Na+ channels. Thus actin filament networks, achieved by either depolymerizing endogenous actin filaments by treatment with cytochalasin D, the addition of exogenous short actin filaments plus ATP, or actin plus cytochalasin D, regulate apical Na+ channel activity. This conclusion was supported by the observation that the addition of short actin filaments in the form of actin-gelsolin complexes in molar ratios less than 8:1 was also effective in activating Na+ channels. We have thus demonstrated a functional role for the cortical actin network in the regulation of epithelial Na+ channels that may complement a structural role for membrane protein targetting and assembly.


1992 ◽  
Vol 286 (3) ◽  
pp. 701-705 ◽  
Author(s):  
J L Daniel ◽  
C Dangelmaier ◽  
J B Smith

Adhesion of electrically permeabilized platelets to collagen was found to be essentially independent of free Ca2+ concentration in the medium. Addition of stable GTP analogues increased the proportion of adhering cells about 5-fold. This effect was inhibited by guanosine 5′-[beta-thio]diphosphate, cytochalasin D or monoclonal antibodies to glycoprotein Ia. In contrast, the protein kinase C inhibitor staurosporine had only a small effect on the GTP-analogue-enhanced adhesion of the permeabilized cells to collagen. These results suggest that a guanine nucleotide regulatory (G)-protein is directly linked to the collagen receptor and is involved in the actin-dependent recruitment of additional collagen receptors.


1993 ◽  
Vol 120 (4) ◽  
pp. 923-934 ◽  
Author(s):  
F Gittes ◽  
B Mickey ◽  
J Nettleton ◽  
J Howard

Microtubules are long, proteinaceous filaments that perform structural functions in eukaryotic cells by defining cellular shape and serving as tracks for intracellular motor proteins. We report the first accurate measurements of the flexural rigidity of microtubules. By analyzing the thermally driven fluctuations in their shape, we estimated the mean flexural rigidity of taxol-stabilized microtubules to be 2.2 x 10(-23) Nm2 (with 6.4% uncertainty) for seven unlabeled microtubules and 2.1 x 10(-23) Nm2 (with 4.7% uncertainty) for eight rhodamine-labeled microtubules. These values are similar to earlier, less precise estimates of microtubule bending stiffness obtained by modeling flagellar motion. A similar analysis on seven rhodamine-phalloidin-labeled actin filaments gave a flexural rigidity of 7.3 x 10(-26) Nm2 (with 6% uncertainty), consistent with previously reported results. The flexural rigidity of these microtubules corresponds to a persistence length of 5,200 microns showing that a microtubule is rigid over cellular dimensions. By contrast, the persistence length of an actin filament is only approximately 17.7 microns, perhaps explaining why actin filaments within cells are usually cross-linked into bundles. The greater flexural rigidity of a microtubule compared to an actin filament mainly derives from the former's larger cross-section. If tubulin were homogeneous and isotropic, then the microtubule's Young's modulus would be approximately 1.2 GPa, similar to Plexiglas and rigid plastics. Microtubules are expected to be almost inextensible: the compliance of cells is due primarily to filament bending or sliding between filaments rather than the stretching of the filaments themselves.


2000 ◽  
Vol 279 (2) ◽  
pp. C480-C487 ◽  
Author(s):  
Mariko Nakamura ◽  
Masanori Sunagawa ◽  
Tadayoshi Kosugi ◽  
Nicholas Sperelakis

To clarify interactions between the cytoskeleton and activity of L-type Ca2+ (CaL) channels in vascular smooth muscle (VSM) cells, we investigated the effect of disruption of actin filaments and microtubules on the L-type Ca2+ current [ I Ba(L)] of cultured VSM cells (A7r5 cell line) using whole cell voltage clamp. The cells were exposed to each disrupter for 1 h and then examined electrophysiologically and morphologically. Results of immunostaining using anti-α-actin and anti-α-tubulin antibodies showed that colchicine disrupted both actin filaments and microtubules, cytochalasin D disrupted only actin filaments, and nocodazole disrupted only microtubules. I Ba(L) was greatly reduced in cells that were exposed to colchicine or cytochalasin D but not to nocodazole. Colchicine even inhibited I Ba(L) by about 40% when the actin filaments were stabilized by phalloidin or when the cells were treated with phalloidin plus taxol to stabilize both cytoskeletal components. These results suggest that colchicine must also cause some inhibition of I Ba(L) due to another unknown mechanism, e.g., a direct block of CaLchannels. In summary, actin filament disruption of VSM cells inhibits CaL channel activity, whereas disrupting the microtubules does not.


1982 ◽  
Vol 92 (1) ◽  
pp. 79-91 ◽  
Author(s):  
M Schliwa

Extraction of SC-1 cells (African green monkey kidney) with the detergent Triton X-100 in combination with stereo high-voltage electron microscopy of whole mount preparations has been used as an approach to determine the mode of action of cytochalasin D on cells. The cytoskeleton of extracted BSC-1 cells consists of substrate-associated filament bundles (stress fibers) and a highly cross-linked network of four major filament types extending throughout the cell body; 10-nm filaments, actin microfilaments, microtubules, and 2- to 3-nm filaments. Actin filaments and 2- to 3-nm filaments form numerous end-to-side contacts with other cytoskeletal filaments. Cytochalasin D treatment severely disrupts network organization, increases the number of actin filament ends, and leads to the formation of filamentous aggregates or foci composed mainly of actin filaments. Metabolic inhibitors prevent filament redistribution, foci formation, and cell arborization, but not disorganization of the three-dimensional filament network. In cells first extracted and then treated with cytochalasin D, network organization is disrupted, and the number of free filament ends is increased. Supernates of preparations treated in this way contain both short actin filaments and network fragments (i.e., actin filaments in end-to-side contact with other actin filaments). It is proposed that the dramatic effects of cytochalasin D on cells result from both a direct interaction of the drug with the actin filament component of cytoskeletal networks and a secondary cellular response. The former leads to an immediate disruption of the ordered cytoskeletal network that appears to involve breaking of actin filaments, rather than inhibition of actin filament-filament interactions (i.e., disruption of end-to-side contacts). The latter engages network fragments in an energy-dependent (contractile) event that leads to the formation of filament foci.


1991 ◽  
Vol 115 (6) ◽  
pp. 1629-1638 ◽  
Author(s):  
E L Bearer

Dynamic behavior of actin filaments in cells is the basis of many different cellular activities. Remodeling of the actin filament network involves polymerization and depolymerization of the filaments. Proteins that regulate these behaviors include proteins that sever and/or cap actin filaments. This report presents direct observation of severing of fluorescently-labeled actin filaments. Coverslips coated with gelsolin, a multi-domain, calcium-dependent capping and severing protein, bound rhodamine-phalloidin-saturated filaments along their length in the presence of EGTA. Upon addition of calcium, attached filaments bent as they broke. Actophorin, a low molecular weight, monomer sequestering, calcium-independent severing protein did not sever phalloidin-saturated filaments. Both gCap 39, a gelsolin-like, calcium-dependent capping protein that does not sever filaments, and CapZ, a heterodimeric, non-calcium-dependent capping protein, bound the filaments by one end to the coverslip. Visualization of individual filaments also revealed severing activity present in mixtures of actin-binding proteins isolated by filamentous actin affinity chromatography from early Drosophila embryos. This activity was different from either gelsolin or actophorin because it was not inhibited by phalloidin, but was calcium independent. The results of these studies provide new information about the molecular mechanisms of severing and capping by well-characterized proteins as well as definition of a novel type of severing activity.


2000 ◽  
Vol 345 (2) ◽  
pp. 185-194 ◽  
Author(s):  
David J. STEPHENS ◽  
George BANTING

Neurabin-II (spinophilin) is a ubiquitously expressed F-actin-binding protein containing an N-terminal actin-binding domain, a PDZ (PSD95/discs large/ZO-1) domain and a C-terminal domain predicted to form a coiled-coil structure. We have stably expressed a green fluorescent protein (GFP)-tagged version of neurabin-II in PC12 cells, and characterized the in vivo dynamics of this actin-binding protein using confocal fluorescence microscopy. We show that GFP-neurabin-II localizes to actin filaments, especially at cortical sites and areas underlying sites of active membrane remodelling. GFP-neurabin-II labels only a subset of F-actin within these cells, as indicated by rhodamine-phalloidin staining. Both actin filaments and small, highly motile structures within the cell body are seen. Photobleaching experiments show that GFP-neurabin-II also exhibits highly dynamic behaviour when bound to actin filaments. Latrunculin B treatment results in rapid relocalization of GFP-neurabin-II to the cytosol, whereas cytochalasin D treatment causes the collapse of GFP-neurabin-II fluorescence to intensely fluorescent foci of F-actin within the cell body. This collapse is reversed on cytochalasin D removal, recovery from which is greatly accelerated by stimulation of cells with epidermal growth factor (EGF). Furthermore, we show that this EGF-induced relocalization of GFP-neurabin-II is dependent on the activity of the small GTPase Rac1 but not the activity of ADP-ribosylation factor 6.


1998 ◽  
Vol 331 (3) ◽  
pp. 917-928 ◽  
Author(s):  
Qinghua WANG ◽  
Philip J. BILAN ◽  
Theodoros TSAKIRIDIS ◽  
Aleksander HINEK ◽  
Amira KLIP

Insulin stimulates the rate of glucose uptake into muscle and adipose cells by translocation of glucose transporters from an intracellular storage pool to the plasma membrane. This event requires the prior activation of phosphatidylinositol 3-kinase (PI 3-kinase). Here we report that insulin causes an increase in wortmannin-sensitive PI 3-kinase activity and a gain in the enzyme's regulatory and catalytic subunits p85α and p110β (but not p110α) in the intracellular compartments containing glucose transporters. The hormone also caused a marked reorganization of actin filaments, which was prevented by cytochalasin D. Cytochalasin D also decreased significantly the insulin-dependent association of PI 3-kinase activity and the levels of insulin receptor substrate (IRS)-1, p85α and p110β with immunopurified GLUT4-containing compartments. In contrast, the drug did not alter the insulin-induced tyrosine phosphorylation of IRS-1, the association of PI 3-kinase with IRS-1, or the stimulation of PI 3-kinase by insulin in anti-(IRS-1) or anti-p85 immunoprecipitates from whole cell lysates. Cytochalasin D, and the chemically unrelated latrunculin B, which also inhibits actin filament reassembly, prevented the insulin stimulation of glucose transport by approx. 50%. Cytochalasin D decreased by about one-half the insulin-dependent translocation to the plasma membrane of the GLUT1 and GLUT4 glucose transporters. The results suggest that the existence of intact actin filament is correlated with the full recruitment of glucose transporters by insulin. The underlying function of the actin filaments might be to facilitate the insulin-mediated association of the p85–p110 PI 3-kinase with glucose-transporter-containing compartments.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


1992 ◽  
Vol 118 (3) ◽  
pp. 561-571 ◽  
Author(s):  
S Chowdhury ◽  
K W Smith ◽  
M C Gustin

In the yeast Saccharomyces cerevisiae, actin filaments function to direct cell growth to the emerging bud. Yeast has a single essential actin gene, ACT1. Diploid cells containing a single copy of ACT1 are osmosensitive (Osms), i.e., they fail to grow in high osmolarity media (D. Shortle, unpublished observations cited by Novick, P., and D. Botstein. 1985. Cell. 40:415-426). This phenotype suggests that an underlying physiological process involving actin is osmosensitive. Here, we demonstrate that this physiological process is a rapid and reversible change in actin filament organization in cells exposed to osmotic stress. Filamentous actin was stained using rhodamine phalloidin. Increasing external osmolarity caused a rapid loss of actin filament cables, followed by a slower redistribution of cortical actin filament patches. In the recovery phase, cables and patches were restored to their original levels and locations. Strains containing an act1-1 mutation are both Osms and temperature-sensitive (Ts) (Novick and Botstein, 1985). To identify genes whose products functionally interact with actin in cellular responses to osmotic stress, we have isolated extragenic suppressors which revert only the Osms but not the Ts phenotype of an act1-1 mutant. These suppressors identify three genes, RAH1-RAH3. Morphological and genetic properties of a dominant suppressor mutation suggest that the product of the wild-type allele, RAH3+, is an actin-binding protein that interacts with actin to allow reassembly of the cytoskeleton following osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document