Stimulation of calcium influx by platelet activating factor in Dictyostelium

1995 ◽  
Vol 108 (4) ◽  
pp. 1597-1603
Author(s):  
R. Schaloske ◽  
C. Sordano ◽  
S. Bozzaro ◽  
D. Malchow

Platelet activating factor (PAF) induces Ca2+ influx in Dictyostelium discoideum. In this investigation we used this activity to analyze the mechanism of PAF action. We found that PAF activity was confined to the period of spike-shaped oscillations and suggest that the role of PAF is to augment cAMP relay. PAF seems to act only a few times during this time period of two hours, since Ca2+ entry adapted to a subsequent stimulus for about 30 minutes. PAF showed a reduced response in the G protein beta- strain LW14 and was unable to induce Ca2+ influx in the G alpha 2- strains HC85 and JM1. The latter expresses the cAMP receptors cAR1 constitutively, and exhibits cAMP-induced Ca2+ influx, albeit at a reduced level. In order to decide whether the inability of PAF to elicit a Ca2+ response in JM1 cells was due to the lack of differentiation and/or the lack of G alpha 2, we inhibited the IP3-dependent pathway with compound U73122 and found that Ca2+ entry was blocked, whereas a closely related inactive compound, U73343, did not alter the response. In agreement with this, NBD-Cl, an inhibitor of Ca2+ uptake into the IP3-sensitive store in Dictyostelium, also abolished PAF activity. The latter was not inhibited by the plasma membrane antagonists BN-52021 or WEB 2170. Therefore PAF seems to operate intracellularly via the IP3-signalling pathway at or upstream of the IP3-sensitive store.

2020 ◽  
Author(s):  
André M. Lazar ◽  
Roshanak Irannejad ◽  
Tanya A. Baldwin ◽  
Aparna A. Sundaram ◽  
J. Silvio Gutkind ◽  
...  

SummaryGPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report dynamic trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes, while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs or Gs. AC9 transits a similar dynamin-dependent early endocytic pathway as activated GPCRs but, in contrast to GPCR trafficking which is regulated by β-arrestin but not Gs, AC9 trafficking is regulated by Gs but not β-arrestin. We also show that AC9, but not AC1, contributes to cAMP production from endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in controlling subcellular location of a relevant effector.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
André M Lazar ◽  
Roshanak Irannejad ◽  
Tanya A Baldwin ◽  
Aparna B Sundaram ◽  
J Silvio Gutkind ◽  
...  

GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires β-arrestin but not Gs, AC9 traffic control requires Gs but not β-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.


1992 ◽  
Vol 267 (4) ◽  
pp. 2375-2379 ◽  
Author(s):  
S Lotersztajn ◽  
C Pavoine ◽  
P Deterre ◽  
J Capeau ◽  
A Mallat ◽  
...  

1985 ◽  
Vol 100 (3) ◽  
pp. 715-720 ◽  
Author(s):  
C Klein ◽  
J Lubs-Haukeness ◽  
S Simons

Stimulation, within 1 min after cAMP stimulation, of aggregation-competent Dictyostelium discoideum amebae was found to cause a rapid (within 1 min) modification of the cell's surface cAMP receptor. The modified receptor migrated on SDS PAGE as a 47,000-mol-wt protein, as opposed to a 45,000-mol-wt protein labeled on unstimulated cells. The length of time this modified receptor could be detected depended upon the strength of the cAMP stimulus: 3-4 min after treatment with 10(-7) M cAMP, cells no longer possessed the 47,000-mol-wt form of the cAMP receptor. Instead, the 45,000-mol-wt form was present. Stimulation of cells with 10(-5) M cAMP, however, resulted in the persistent (over 15 min) expression of the modified receptor. The time course, concentration dependence, and specificity of stimulus for this cAMP-induced shift in the cAMP receptor were found to parallel the cAMP-stimulated phosphorylation of a 47,000-mol-wt protein. In addition, both phenomena were shown to occur in the absence of endogenous cAMP synthesis. The possibility that the cAMP receptor is phosphorylated in response to cAMP stimulation, and the role of this event in cell desensitization, are discussed.


2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


2006 ◽  
Vol 105 (2) ◽  
pp. 288-293 ◽  
Author(s):  
Yoshifumi Kawanabe ◽  
Tomoh Masaki ◽  
Nobuo Hashimoto

Object Endothelin 1 (ET-1) is a major cause of cerebral vasospasm after subarachnoid hemorrhage (SAH), and extracellular Ca++ influx plays an essential role in ET-1–induced vasospasm. The authors recently demonstrated that ET-1 activates two types of Ca++-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca++ channel (SOCC) in vascular smooth-muscle cells located in the basilar arteries (BAs) of rabbits. In the present study, they investigate the effects of phospholipase C (PLC) on ET-1–induced activation of these Ca++ channels and BA contraction by using the PLC inhibitor U73122. Methods To determine which Ca++ channels are activated via a PLC-dependent pathway, these investigators monitored the intracellular free Ca++ concentration ([Ca++]i). The role of PLC in ET-1–induced vascular contraction was examined by performing a tension study of rabbit BA rings. The U73122 inhibited the ET-1–induced transient increase in [Ca++]i, which resulted from mobilization of Ca++; from the intracellular store. Phospholipase C also inhibited ET-1–induced extracellular Ca++ influx through the SOCC and NSCC-2, but not through the NSCC-1. The U73122 inhibited the ET-1–induced contraction of the rabbit BA rings, which depended on extracellular Ca++ influx through the SOCC and NSCC-2. Conclusions These results indicate the following. 1) The SOCC and NSCC-2 are stimulated by ET-1 via a PLC-dependent cascade whereas NSCC-1 is stimulated via a PLC-independent cascade. 2) The PLC is involved in the ET-1–induced contraction of rabbit BA rings, which depends on extracellular Ca++ influx through the SOCC and NSCC-2.


1992 ◽  
Vol 262 (2) ◽  
pp. C533-C536 ◽  
Author(s):  
B. A. Davis ◽  
E. M. Hogan ◽  
W. F. Boron

Many cells respond to shrinkage by stimulating specific ion transport processes (e.g., Na-H exchange). However, it is not known how the cell senses this volume change, nor how this signal is transduced to an ion transporter. We have studied the activation of Na-H exchange in internally dialyzed barnacle muscle fibers, measuring intracellular pH (pHi) with glass microelectrodes. When cells are dialyzed to a pHi of approximately 7.2, Na-H exchange is active only in shrunken cells. We found that the shrinkage-induced stimulation of Na-H exchange, elicited by increasing medium osmolality from 975 to 1,600 mosmol/kgH2O, is inhibited approximately 72% by including in the dialysis fluid 1 mM guanosine 5'-O-(2-thiodiphosphate). The latter is an antagonist of G protein activation. Even in unshrunken cells, Na-H exchange is activated by dialyzing the cell with 1 mM guanosine 5'-O-(3-thiotriphosphate), which causes the prolonged activation of G proteins. Activation of Na-H exchange is also elicited in unshrunken cells by injecting cholera toxin, which activates certain G proteins. Neither exposing cells to 100 nM phorbol 12-myristate 13-acetate nor dialyzing them with a solution containing 20 microM adenosine 3',5'-cyclic monophosphate (cAMP) (or 50 microM dibutyryl cAMP) plus 0.5 mM 3-isobutyl-1-methylxanthine substantially stimulates the exchanger. Thus our data suggest that a G protein plays a key role in the transduction of the shrinkage signal to the Na-H exchanger via a pathway that involves neither protein kinase C nor cAMP.


2003 ◽  
Vol 162 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Michael Krauss ◽  
Masahiro Kinuta ◽  
Markus R. Wenk ◽  
Pietro De Camilli ◽  
Kohji Takei ◽  
...  

Clathrin-mediated endocytosis of synaptic vesicle membranes involves the recruitment of clathrin and AP-2 adaptor complexes to the presynaptic plasma membrane. Phosphoinositides have been implicated in nucleating coat assembly by directly binding to several endocytotic proteins including AP-2 and AP180. Here, we show that the stimulatory effect of ATP and GTPγS on clathrin coat recruitment is mediated at least in part by increased levels of PIP2. We also provide evidence for a role of ADP-ribosylation factor 6 (ARF6) via direct stimulation of a synaptically enriched phosphatidylinositol 4-phosphate 5-kinase type Iγ (PIPKIγ), in this effect. These data suggest a model according to which activation of PIPKIγ by ARF6-GTP facilitates clathrin-coated pit assembly at the synapse.


Sign in / Sign up

Export Citation Format

Share Document