scholarly journals G protein-regulated endocytic trafficking of adenylyl cyclase type 9

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
André M Lazar ◽  
Roshanak Irannejad ◽  
Tanya A Baldwin ◽  
Aparna B Sundaram ◽  
J Silvio Gutkind ◽  
...  

GPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report selective trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs. AC9 transits a similar, dynamin-dependent early endocytic pathway as ligand-activated GPCRs. However, unlike GPCR traffic control which requires β-arrestin but not Gs, AC9 traffic control requires Gs but not β-arrestin. We also show that AC9, but not AC1, mediates cAMP production stimulated by endogenous receptor activation in endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in regulating the subcellular distribution of a relevant effector.

2020 ◽  
Author(s):  
André M. Lazar ◽  
Roshanak Irannejad ◽  
Tanya A. Baldwin ◽  
Aparna A. Sundaram ◽  
J. Silvio Gutkind ◽  
...  

SummaryGPCRs are increasingly recognized to initiate signaling via heterotrimeric G proteins as they move through the endocytic network, but little is known about how relevant G protein effectors are localized. Here we report dynamic trafficking of adenylyl cyclase type 9 (AC9) from the plasma membrane to endosomes, while adenylyl cyclase type 1 (AC1) remains in the plasma membrane, and stimulation of AC9 trafficking by ligand-induced activation of Gs-coupled GPCRs or Gs. AC9 transits a similar dynamin-dependent early endocytic pathway as activated GPCRs but, in contrast to GPCR trafficking which is regulated by β-arrestin but not Gs, AC9 trafficking is regulated by Gs but not β-arrestin. We also show that AC9, but not AC1, contributes to cAMP production from endosomes. These results reveal dynamic and isoform-specific trafficking of adenylyl cyclase in the endocytic network, and a discrete role of a heterotrimeric G protein in controlling subcellular location of a relevant effector.


1995 ◽  
Vol 108 (4) ◽  
pp. 1597-1603
Author(s):  
R. Schaloske ◽  
C. Sordano ◽  
S. Bozzaro ◽  
D. Malchow

Platelet activating factor (PAF) induces Ca2+ influx in Dictyostelium discoideum. In this investigation we used this activity to analyze the mechanism of PAF action. We found that PAF activity was confined to the period of spike-shaped oscillations and suggest that the role of PAF is to augment cAMP relay. PAF seems to act only a few times during this time period of two hours, since Ca2+ entry adapted to a subsequent stimulus for about 30 minutes. PAF showed a reduced response in the G protein beta- strain LW14 and was unable to induce Ca2+ influx in the G alpha 2- strains HC85 and JM1. The latter expresses the cAMP receptors cAR1 constitutively, and exhibits cAMP-induced Ca2+ influx, albeit at a reduced level. In order to decide whether the inability of PAF to elicit a Ca2+ response in JM1 cells was due to the lack of differentiation and/or the lack of G alpha 2, we inhibited the IP3-dependent pathway with compound U73122 and found that Ca2+ entry was blocked, whereas a closely related inactive compound, U73343, did not alter the response. In agreement with this, NBD-Cl, an inhibitor of Ca2+ uptake into the IP3-sensitive store in Dictyostelium, also abolished PAF activity. The latter was not inhibited by the plasma membrane antagonists BN-52021 or WEB 2170. Therefore PAF seems to operate intracellularly via the IP3-signalling pathway at or upstream of the IP3-sensitive store.


2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


2020 ◽  
Author(s):  
Joshua D. Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

SUMMARYGPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR), is necessary for growth of glioblastoma (GBM), a brain malignancy. The extracellular N-terminus of GPR133 is thought to be autoproteolytically cleaved into an N-terminal and a C-terminal fragment (NTF and CTF). Nevertheless, the role of this cleavage in receptor activation remains unclear. Here, we show that the wild-type (WT) receptor is cleaved after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant (H543R) in patient-derived GBM cultures and HEK293T cells. However, the resulting NTF and CTF remain non-covalently bound until the receptor is trafficked to the plasma membrane, where we find NTF-CTF dissociation. Using a fusion of the hPAR1 receptor N-terminus and the CTF of GPR133, we demonstrate that thrombin-induced cleavage and shedding of the hPAR1 NTF increases receptor signaling. This study supports a model where dissociation of the NTF at the plasma membrane promotes GPR133 activation.Highlights-GPR133 is intramolecularly cleaved in patient-derived GBM cultures-Cleaved GPR133 signals at higher efficacy than the uncleavable GPR133 H543R mutant-The N- and C-terminal fragments (NTF and CTF) of GPR133 dissociate at the plasma membrane-Acute thrombin-induced cleavage of the human PAR1 NTF from the GPR133 CTF increases signalingeTOC BlurbFrenster et al. demonstrate intramolecular cleavage of the adhesion GPCR GPR133 in glioblastoma and HEK293T cells. The resulting N- and C-terminal fragments dissociate at the plasma membrane to increase canonical signaling. The findings suggest dissociation of GPR133’s N-terminus at the plasma membrane represents a major mechanism of receptor activation.


1992 ◽  
Vol 267 (4) ◽  
pp. 2375-2379 ◽  
Author(s):  
S Lotersztajn ◽  
C Pavoine ◽  
P Deterre ◽  
J Capeau ◽  
A Mallat ◽  
...  

FEBS Letters ◽  
1992 ◽  
Vol 312 (2-3) ◽  
pp. 223-228 ◽  
Author(s):  
Sylvie Hermouet ◽  
Philippe de Mazancourt ◽  
Allen M. Spiegel ◽  
Marilyn Gist Farquhar ◽  
Bridget S. Wilson

Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 688-688
Author(s):  
Toshihiro Ichiki ◽  
Kotaro Takeda ◽  
Akira Takeshita

58 Recent studies suggest a crucial role of reactive oxygen species (ROS) for the signaling of Angiotensin II (Ang II) through type 1 Ang II receptor (AT1-R). However, the role of ROS in the regulation of AT1-R expression has not been explored. In this study, we examined the effect of an antioxidant on the homologous downregulation of AT1-R by Ang II. Ang II (10 -6 mol/L) decreased AT1-R mRNA with a peak suppression at 6 hours of stimulation in rat aortic vascular smooth muscle cells (VSMC). Ang II dose-dependently (10 -8 -10 -6 ) suppressed AT1-R mRNA at 6 hours of stimulation. Preincubation of VSMC with N-acetylcysteine (NAC), a potent antioxidant, almost completely inhibited the Ang II-induced downregulation of AT1-R mRNA. The effect of NAC was due to stabilization of the AT1-R mRNA that was destabilized by Ang II. Ang II did not affect the promoter activity of AT1-R gene. Diphenylene iodonium (DPI), an inhibitor of NADH/NADPH oxidase failed to inhibit the Ang II-induced AT1-R mRNA downregulation. The Ang II-induced AT1-R mRNA downregulation was also blocked by PD98059, an extracellular signal-regulated protein kinase (ERK) kinase inhibitor. Ang II-induced ERK activation was inhibited by NAC as well as PD98059 whereas DPI did not inhibit it. To confirm the role of ROS in the regulation of AT1-R mRNA expression, VSMC were stimulated with H 2 O 2 . H 2 O 2 suppressed the AT1-R mRNA expression and activated ERK. These results suggest that production of ROS and activation of ERK are critical for downregulation of AT1-R mRNA. The differential effect of NAC and DPI on the downregulation of AT1-R mRNA may suggest the presence of other sources than NADH/NADPH oxidase pathway for ROS in Ang II signaling. Generation of ROS through stimulation of AT1-R not only mediates signaling of Ang II but may play a crucial role in the adaptation process of AT1-R to the sustained stimulation of Ang II.


2003 ◽  
Vol 284 (3) ◽  
pp. H779-H789 ◽  
Author(s):  
Kristie Rhinehart ◽  
Corey A. Handelsman ◽  
Erik P. Silldorff ◽  
Thomas L. Pallone

We tested whether the respective angiotensin type 1 (AT1) and 2 (AT2) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca2+]i) suppression induced by ANG II. ANG II partially reversed the increase in [Ca2+]igenerated by cyclopiazonic acid (CPA; 10−5 M), acetylcholine (ACh; 10−5 M), or bradykinin (BK; 10−7 M). Losartan (10−5 M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT2 receptor blockade with PD-123319 (10−8 M) augmented the suppression of endothelial [Ca2+]i responses. Similarly, preactivation with the AT2 receptor agonist CGP-42112A (10−8 M) prevented AT1 receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca2+]i. In contrast to endothelial [Ca2+]i suppression by ANG II, pericyte [Ca2+]i exhibited typical peak and plateau [Ca2+]i responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT2 receptors were blocked with PD-123319. Similarly, AT2 receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10−5 M) showed no AT1-like action to constrict microperfused DVR or increase pericyte [Ca2+]i. We conclude that ANG II suppression of endothelial [Ca2+]i and stimulation of pericyte [Ca2+]i is mediated by AT1 or AT1-like receptors. Furthermore, AT2 receptor activation opposes ANG II-induced endothelial [Ca2+]i suppression and abrogates ANG II-induced DVR vasoconstriction.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2712-2712
Author(s):  
Maike Rehage ◽  
Susanne Wingert ◽  
Nadine Haetscher ◽  
Sabrina Bothur ◽  
Hubert Serve ◽  
...  

Abstract Heterotrimeric G-proteins transmit signals of G-protein coupled receptors and regulate many basic cellular functions. However, their role in normal and malignant hematopoietic stem cells remains obscure. Activating mutations in the heterotrimeric G-protein Gaq were found in various cancers and its expression is enhanced in diffuse large B-cell lymphoma and T-ALL. Our previous data suggested the involvement of heterotrimeric G-proteins in Flt3-ITD-mediated leukemic transformation. FMS-like tyrosine kinase 3 with internal tandem duplication (FLT3-ITD) is a frequent oncoprotein in acute myeloid leukemia causing constitutive active STAT5 signaling. Here, we investigated a novel role of Gaq in Flt3-ITD-induced leukemic transformation. We could show that Gaq is indispensable for aberrant FLT3-ITD activation and oncogenic function as Gaq activity is necessary to maintain the autophosphorylation of FLT3-ITD. Gaq abrogation resulted in diminished cell proliferation and colony formation as well as delayed leukemogenesis in vivo of Flt3-ITD leukemic cells. Importantly, the growth inhibition could be rescued by addition of IL3 and did not occur in the presence of FLT3 ligand-activated FLT3 wildtype receptor, demonstrating the specificity of Gaq requirement for FLT3-ITD oncogenic signaling. Interestingly, co-immunoprecipitations revealed a direct physical interaction between FLT3-ITD and Gaq which did not require phosphorylation of the receptor tyrosine kinase. Hence, FLT3-ITD hyperphosphorylation seems to be rather a consequence of the interaction than a prerequisite. Flt3-ITD-induced transformation of murine hematopoietic stem/progenitor cells (HSPCs) strictly depended on the presence of Gaq, and the ablation of Gaq/11 in transplanted Flt3-ITD-transduced HSPCs from conditional Gaq/11 double knock-out mice delayed leukemic burden. These findings of an unexpected, yet critical, role of Gaq place the molecule as an important target for antileukemic strategies. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document