scholarly journals Role of GRK6 in the Regulation of Platelet Activation through Selective G Protein-Coupled Receptor (GPCR) Desensitization

2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.

2004 ◽  
Vol 32 (5) ◽  
pp. 871-872 ◽  
Author(s):  
V. Binet ◽  
C. Goudet ◽  
C. Brajon ◽  
L. Le Corre ◽  
F. Acher ◽  
...  

The GABAB (γ-aminobutyric acid-B) receptor is composed of two subunits, GABAB1 and GABAB2. Both subunits share structural homology with other class-III G-protein-coupled receptors. They contain two main domains, a heptahelical domain typical of all G-protein-coupled receptors and a large ECD (extracellular domain). It has not been demonstrated whether the association of these two subunits is always required for function. However, GABAB2 plays a major role in coupling with G-proteins, and GABAB1 has been shown to bind GABA. To date, only ligands interacting with GABAB1-ECD have been identified. In the present study, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABAB receptor. We have shown that it can weakly activate the wild-type GABAB receptor, but also the GABAB2 expressed alone, thus being the first described agonist of GABAB2. CGP7930 retains its weak agonist activity on a GABAB2 subunit deleted of its ECD. Thus the heptahelical domain of GABAB2 behaves similar to a rhodopsin-like receptor. These results open new strategies for studying the mechanism of activation of GABAB receptor and examine any possible role of GABAB2.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ian Winfield ◽  
Kerry Barkan ◽  
Sarah Routledge ◽  
Nathan J. Robertson ◽  
Matthew Harris ◽  
...  

The first intracellular loop (ICL1) of G protein-coupled receptors (GPCRs) has received little attention, although there is evidence that, with the 8th helix (H8), it is involved in early conformational changes following receptor activation as well as contacting the G protein β subunit. In class B1 GPCRs, the distal part of ICL1 contains a conserved R12.48KLRCxR2.46b motif that extends into the base of the second transmembrane helix; this is weakly conserved as a [R/H]12.48KL[R/H] motif in class A GPCRs. In the current study, the role of ICL1 and H8 in signaling through cAMP, iCa2+ and ERK1/2 has been examined in two class B1 GPCRs, using mutagenesis and molecular dynamics. Mutations throughout ICL1 can either enhance or disrupt cAMP production by CGRP at the CGRP receptor. Alanine mutagenesis identified subtle differences with regard elevation of iCa2+, with the distal end of the loop being particularly sensitive. ERK1/2 activation displayed little sensitivity to ICL1 mutation. A broadly similar pattern was observed with the glucagon receptor, although there were differences in significance of individual residues. Extending the study revealed that at the CRF1 receptor, an insertion in ICL1 switched signaling bias between iCa2+ and cAMP. Molecular dynamics suggested that changes in ICL1 altered the conformation of ICL2 and the H8/TM7 junction (ICL4). For H8, alanine mutagenesis showed the importance of E3908.49b for all three signal transduction pathways, for the CGRP receptor, but mutations of other residues largely just altered ERK1/2 activation. Thus, ICL1 may modulate GPCR bias via interactions with ICL2, ICL4 and the Gβ subunit.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Marijke J Kuijpers ◽  
Nadine J Mattheij ◽  
Lina Cipolla ◽  
Johanna P van Geffen ◽  
Toby Lawrence ◽  
...  

Objective: To investigate the roles and signaling pathways of CD40L and CD40 in platelet activation and thrombus formation under atherothrombotic conditions. Approach and Results: Mouse platelets lacking CD40L (Cd40lg -/- Apoe -/- ) showed diminished αIIbβ3 activation and α-granule secretion in response to collagen receptor (GPVI) stimulation, while CD40 deficient platelets (Cd40 -/- Apoe -/- ) showed increased responses. ADP- or thrombin-evoked activation was unaffected. In both Cd40lg -/- Apoe -/- and Cd40 -/- Apoe -/- mice, formation of multi-layered thrombi was decreased on both atherosclerotic plaque material and collagen, in comparison to controls. Addition of CD40L prior to perfusion over collagen or plaque material enhanced dense aggregate formation in Apoe -/- , Cd40lg -/- Apoe -/- and Cd40 -/- Apoe -/- blood. CD40L or low GPVI stimulation separately did not cause platelet aggregation. But when combined, aggregation was potentiated, even in the absence of CD40. This potentiation was antagonized by inhibiting PI3Kβ, as well as in platelets from Pik3cb R/R mice. CD40L enhanced Akt phosphorylation at low GPVI stimulation, which was again antagonized by PI3Kβ inhibition and absent in platelets from Pik3cb R/R mice. Finally, Chuk1 A/A Apoe -/- mice, deficient in IKKα, displayed no differences in platelet aggregation - with or without CD40L - nor in thrombus formation in whole blood, indicating that these effects are not mediated via IKKα/NFkB. Conclusions: Under atherothrombotic conditions, CD40L enforces collagen-dependent platelet activation, by supporting integrin αIIbβ3 activation, secretion and dense thrombus formation via PI3Kβ, but not IKKα. Since shedding of CD40L starts minutes after activation, these results point to a joint role of both platelet-bound and soluble CD40L in controlling the size of rapidly formed thrombi.


2008 ◽  
Vol 99 (03) ◽  
pp. 466-472 ◽  
Author(s):  
Christian Gachet

SummaryADP and ATP play a crucial role in platelet activation and their receptors are potential targets for antithrombotic drugs. The ATP-gated cation channel P2X1 and the two G protein-coupled ADP receptors, P2Y1 and P2Y12, selectively contribute to platelet aggregation and formation of a thrombus.Owing to its central role in the growth and stabilization of a thrombus, the P2Y12 receptor is an established target of antithrombotic drugs like the thienopyridines clopidogrel or prasugrel, or competitive antag-onists such as cangrelor or AZD6140.The optimal inhibition of this receptor to reach clinical efficacy while preserving patients from unacceptable bleeding is a matter of debate. On the other hand, studies in P2Y1 and P2X1 knockout mice and using selective P2Y1 and P2X1 antagonists have shown that these receptors are also attractive targets for new antithrombotic compounds. Finally, the regulation by the P2 receptors of the platelet involvement in inflammatory processes is also briefly discussed.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2418-2418
Author(s):  
Li Zhu

Abstract Tannic acid (TA) was a polyphenol that harbors anti-oxidant capacity. A recent report implied that surface coating with TA might blunt thrombosis via altering the structure of fibrinogen. However, the effect of TA on platelet function and in vivo thrombus formation has not been reported. In this study, we showed that TA inhibits PDI activity and attenuates platelet activation. To explore the effects of TA on platelet aggregation, gel-filtered human platelets from healthy human donors were pretreated with TA (10/30/50 μM) or vehicle (0.9% sodium chloride) before being stimulated by various agonists. Turbidity analyses on a Chronolog aggregometer showed that TA dose-dependently inhibited platelet aggregation induced by thrombin, SFLLRN, GYQGQV, collagen, CRP, U46619, and ristocetin. Next, we employed flow cytometry (FACS) to determine the role of TA in platelet activation, including α-granule secretion and integrin activation. Pretreatment of platelets with TA led to significant reductions in surface P-selectin expression and soluble fibrinogen binding, supporting the inhibition of diverse platelet activation pathways. Supportively, platelet spreading on immobilized fibrinogen was significantly suppressed by TA treatment. In addition, cell viability assay with Almar blue agent showed no detrimental impact of TA on the survival of platelets. To ask whether the antiplatelet role of TA might be translated into an antithrombotic efficacy, we tested the effect of TA in both ex vivo and in vivo thrombosis models. Calcein-labeled human whole blood was perfused through microfluidic channels coated with collagen, and adherent platelets were visualized under a fluorescent microscopy. However, treatment with TA suppressed the number of adherent platelets under flow conditions. Moreover, in laser-induced mouse cremaster muscle arteries, administration of TA (5mg/kg) significantly reduced the size of forming thrombi compared with the vehicle. Verification of bleeding risk using tail truncation assay indicated no prolongation of bleeding time in mice receiving TA. Thus, TA shows an antiplatelet effect and may also attenuate thrombus formation. To gain a mechanistic insight to the role of TA in platelet function, we performed a molecular docking screen of the structure of TA and platelet surface proteins using the Autodock Vina software, which displayed the binding of TA with protein disulfide isomerase at the enzymatic active center. We then measured the impact of TA on PDI reductase activity with the dieosin glutathione disulfide assay in vitro (di-GSSG), showing that TA significantly inhibited PDI activity in a concentration-dependent manner. The results were verified in platelets using the 3-(N-Maleimidylpropionyl) biocytin (MPB) labeling, which showed that TA abrogated thrombin-stimulated free thiol formation on platelet surface. Supportively, FACS demonstrated that TA significantly suppressed the binding of fluorescent-labeled PDI to Mn2+-activated platelet integrin β3. Taken together, our findings demonstrated that TA inhibits PDI activity and may become a novel antithrombotic agent. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Joshua D. Frenster ◽  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Devin Bready ◽  
Jordan Wilcox ◽  
...  

SUMMARYGPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR), is necessary for growth of glioblastoma (GBM), a brain malignancy. The extracellular N-terminus of GPR133 is thought to be autoproteolytically cleaved into an N-terminal and a C-terminal fragment (NTF and CTF). Nevertheless, the role of this cleavage in receptor activation remains unclear. Here, we show that the wild-type (WT) receptor is cleaved after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant (H543R) in patient-derived GBM cultures and HEK293T cells. However, the resulting NTF and CTF remain non-covalently bound until the receptor is trafficked to the plasma membrane, where we find NTF-CTF dissociation. Using a fusion of the hPAR1 receptor N-terminus and the CTF of GPR133, we demonstrate that thrombin-induced cleavage and shedding of the hPAR1 NTF increases receptor signaling. This study supports a model where dissociation of the NTF at the plasma membrane promotes GPR133 activation.Highlights-GPR133 is intramolecularly cleaved in patient-derived GBM cultures-Cleaved GPR133 signals at higher efficacy than the uncleavable GPR133 H543R mutant-The N- and C-terminal fragments (NTF and CTF) of GPR133 dissociate at the plasma membrane-Acute thrombin-induced cleavage of the human PAR1 NTF from the GPR133 CTF increases signalingeTOC BlurbFrenster et al. demonstrate intramolecular cleavage of the adhesion GPCR GPR133 in glioblastoma and HEK293T cells. The resulting N- and C-terminal fragments dissociate at the plasma membrane to increase canonical signaling. The findings suggest dissociation of GPR133’s N-terminus at the plasma membrane represents a major mechanism of receptor activation.


Sign in / Sign up

Export Citation Format

Share Document