Psoralen photoactivation promotes morphological and functional changes in fibroblasts in vitro reminiscent of cellular senescence

1998 ◽  
Vol 111 (6) ◽  
pp. 759-767
Author(s):  
G. Herrmann ◽  
P. Brenneisen ◽  
M. Wlaschek ◽  
J. Wenk ◽  
K. Faisst ◽  
...  

Premature aging of the skin is a prominent side effect of psoralen photoactivation, a treatment used widely for various skin disorders. The molecular mechanisms underlying premature aging upon psoralen photoactivation are as yet unknown. Here we show that treatment of fibroblasts with 8-methoxypsoralen (8-MOP) and subsequent ultraviolet A (UVA) irradiation resulted in a permanent switch of mitotic to stably postmitotic fibroblasts which acquired a high level of de novo expression of SA-beta-galactosidase, a marker for fibroblast senescence in vitro and in vivo. A single exposure of fibroblasts to 8-MOP/UVA resulted in a 5.8-fold up-regulation of two matrix-degrading enzymes, interstitial collagenase (MMP-1) and stromelysin-1 (MMP-3), over a period of >120 days, while TIMP-1, the major inhibitor of MMP-1 and MMP-3, was only slightly induced. This imbalance between matrix-degrading metalloproteases and their inhibitor may lead to connective tissue damage, a hallmark of premature aging. Superoxide anion and hydrogen peroxide, but not singlet oxygen, were identified as important intermediates in the downstream signaling pathway leading to these complex fibroblast responses upon psoralen photoactivation. Collectively, the end phenotype induced upon psoralen photoactivation shares several criteria of senescent cells. In the absence of detailed molecular data on what constitutes normal aging, it is difficult to decide whether the changes reported here reflect mechanisms underlying normal cellular aging/senescence or rather produce a mimic of cellular aging/senescence by quite different pathways.

2000 ◽  
Vol 278 (4) ◽  
pp. F613-F619 ◽  
Author(s):  
Alexander Shigaev ◽  
Carol Asher ◽  
Hedva Latter ◽  
Haim Garty ◽  
Eitan Reuveny

Aldosterone is the major corticosteroid regulating Na+ absorption in tight epithelia and acts primarily by activating the epithelial Na+ channel (ENaC) through unknown induced proteins. Recently, it has been reported that aldosterone induces the serum- and glucocorticoid-dependent kinase sgk and that coexpressing ENaC with this kinase in Xenopus laevis oocytes increases the amiloride-sensitive Na+current (Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, and Pearce D. Proc Natl Acad Sci USA 96: 2514–2519, 1999). The present study was done to further characterize regulation of sgk by aldosterone in native mammalian epithelia and to examine its effect on ENaC. With both in vivo and in vitro protocols, an almost fivefold increase in the abundance of sgk mRNA has been demonstrated in rat kidney and colon but not in lung. Induction of sgk by aldosterone was detected in kidney cortex and medulla, whereas the papilla expressed a constitutively high level of the kinase. The increase in sgkmRNA was detected as early as 30 min after the hormonal application and was independent of de novo protein synthesis. The observed aldosterone dose-response relationships suggest that the response is mediated, at least in part, by occupancy of the mineralocorticoid receptor. Coexpressing sgk and ENaC in Xenopus oocytes evoked a fourfold increase in the amiloride-blockable Na+ channel activity. A point mutation in the β-subunit known to impair regulation of the channel by Nedd4 (Y618A) had no significant effect on the response to sgk.


2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.


2021 ◽  
Author(s):  
Chuanhui Sun ◽  
Peng Wang ◽  
Yujiang Chen ◽  
Qiuying Li ◽  
Hua Deng ◽  
...  

Abstract Background:The HOX family transcription factor HOXB9 is a crucial element in the progression of various cancers. In the previous study conducted by the investigators, a drastically higher HOXB9 expression was reported in laryngeal squamous cell cancer (LSCC), when compared to adjacent normal laryngeal squamous tissues. Furthermore, a high level of HOXB9 was closely correlated with histological grade and overall survival in LSCC patients. However, the underlying molecular mechanisms have not been fully elucidated.Results: The present study explored the molecular mechanisms of HOXB9 in LSCC progression. Furthermore, the in vitro and in vivo studies revealed that the gene knockout of HOXB9 using the CRISPR/CAS9 system inhibited cell proliferation, migration and invasion, and promoted cell apoptosis. Mechanistic studies in LSCC cell lines and human LSCC specimens demonstrated that HOXB9 promotes LSCC progression by directly upregulating the MMP12 expression at the level of its transcription.Conclusions: Collectively, the present study is the first to demonstrate the role of HOXB9 in the regulation of LSCC progression by enhancing the upregulation of MMP12.


2020 ◽  
Vol 48 (5) ◽  
pp. 2003-2014
Author(s):  
Jahangir Md. Alam ◽  
Nobuo N. Noda

Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.


2017 ◽  
Vol 45 (6) ◽  
pp. 1279-1293 ◽  
Author(s):  
Charlotte Strandgren ◽  
Gwladys Revêchon ◽  
Agustín Sola Carvajal ◽  
Maria Eriksson

Hutchinson-Gilford progeria syndrome (HGPS, progeria) is an extremely rare premature aging disorder affecting children, with a disease incidence of ∼1 in 18 million individuals. HGPS is usually caused by a de novo point mutation in exon 11 of the LMNA gene (c.1824C>T, p.G608G), resulting in the increased usage of a cryptic splice site and production of a truncated unprocessed lamin A protein named progerin. Since the genetic cause for HGPS was published in 2003, numerous potential treatment options have rapidly emerged. Strategies to interfere with the post-translational processing of lamin A, to enhance progerin clearance, or directly target the HGPS mutation to reduce the progerin-producing alternative splicing of the LMNA gene have been developed. Here, we give an up-to-date resume of the contributions made by our and other research groups to the growing list of different candidate treatment strategies that have been tested, both in vitro, in vivo in mouse models for HGPS and in clinical trials in HGPS patients.


2008 ◽  
Vol 19 (4) ◽  
pp. 1354-1365 ◽  
Author(s):  
Mohua Banerjee ◽  
Delma S. Thompson ◽  
Anna Lazzell ◽  
Patricia L. Carlisle ◽  
Christopher Pierce ◽  
...  

The specific ability of the major human fungal pathogen Candida albicans, as well as many other pathogenic fungi, to extend initial short filaments (germ tubes) into elongated hyphal filaments is important for a variety of virulence-related processes. However, the molecular mechanisms that control hyphal extension have remained poorly understood for many years. We report the identification of a novel C. albicans transcriptional regulator, UME6, which is induced in response to multiple host environmental cues and is specifically important for hyphal extension. Although capable of forming germ tubes, the ume6Δ/ume6Δ mutant exhibits a clear defect in hyphal extension both in vitro and during infection in vivo and is attenuated for virulence in a mouse model of systemic candidiasis. We also show that UME6 is an important downstream component of both the RFG1-TUP1 and NRG1-TUP1 filamentous growth regulatory pathways, and we provide evidence to suggest that Nrg1 and Ume6 function together by a negative feedback loop to control the level and duration of filament-specific gene expression in response to inducing conditions. Our results suggest that hyphal extension is controlled by a specific transcriptional regulatory mechanism and is correlated with the maintenance of high-level expression of genes in the C. albicans filamentous growth program.


2010 ◽  
Vol 10 ◽  
pp. 145-160 ◽  
Author(s):  
Inga Wessels ◽  
Judith Jansen ◽  
Lothar Rink ◽  
Peter Uciechowski

All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN) is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies betweenin vivoandin vitroresults, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Xuhui Bao ◽  
...  

Abstract Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes. While it is well established that Myc functions by binding to its target genes to regulate their transcription, the distribution of the transcriptional output across human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructures, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly in genes of involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc’s expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on the aforementioned infrastructure genes, which was accompanied by the abrogation of MB cell’s proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, gain new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in MB cells empowered by a high level of Myc oncoprotein.


Hypertension ◽  
2020 ◽  
Vol 75 (5) ◽  
pp. 1279-1288 ◽  
Author(s):  
Anna Cantalupo ◽  
Linda Sasset ◽  
Antonella Gargiulo ◽  
Luisa Rubinelli ◽  
Ilaria Del Gaudio ◽  
...  

Ceramides are sphingolipids that modulate a variety of cellular processes via 2 major mechanisms: functioning as second messengers and regulating membrane biophysical properties, particularly lipid rafts, important signaling platforms. Altered sphingolipid levels have been implicated in many cardiovascular diseases, including hypertension, atherosclerosis, and diabetes mellitus–related conditions; however, molecular mechanisms by which ceramides impact endothelial functions remain poorly understood. In this regard, we generated mice defective of endothelial sphingolipid de novo biosynthesis by deleting the Sptlc2 (long chain subunit 2 of serine palmitoyltransferase)—the first enzyme of the pathway. Our study demonstrated that endothelial sphingolipid de novo production is necessary to regulate (1) signal transduction in response to NO agonists and, mainly via ceramides, (2) resting eNOS (endothelial NO synthase) phosphorylation, and (3) blood pressure homeostasis. Specifically, our findings suggest a prevailing role of C16:0-Cer in preserving vasodilation induced by tyrosine kinase and GPCRs (G-protein coupled receptors), except for Gq-coupled receptors, while C24:0- and C24:1-Cer control flow-induced vasodilation. Replenishing C16:0-Cer in vitro and in vivo reinstates endothelial cell signaling and vascular tone regulation. This study reveals an important role of locally produced ceramides, particularly C16:0-, C24:0-, and C24:1-Cer in vascular and blood pressure homeostasis, and establishes the endothelium as a key source of plasma ceramides. Clinically, specific plasma ceramides ratios are independent predictors of major cardiovascular events. Our data also suggest that plasma ceramides might be indicative of the diseased state of the endothelium.


2016 ◽  
Vol 84 (11) ◽  
pp. 3141-3151 ◽  
Author(s):  
Adrienne C. Showman ◽  
George Aranjuez ◽  
Philip P. Adams ◽  
Mollie W. Jewett

A greater understanding of the molecular mechanisms that Borrelia burgdorferi uses to survive during mammalian infection is critical for the development of novel diagnostic and therapeutic tools to improve the clinical management of Lyme disease. By use of an in vivo expression technology (IVET)-based approach to identify B. burgdorferi genes expressed in vivo , we discovered the bb0318 gene, which is thought to encode the ATPase component of a putative riboflavin ABC transport system. Riboflavin is a critical metabolite enabling all organisms to maintain redox homeostasis. B. burgdorferi appears to lack the metabolic capacity for de novo synthesis of riboflavin and so likely relies on scavenging riboflavin from the host environment. In this study, we sought to investigate the role of bb0318 in B. burgdorferi pathogenesis. No in vitro growth defect was observed for the Δ bb0318 clone. However, the mutant spirochetes displayed reduced levels of survival when exposed to exogenous hydrogen peroxide or murine macrophages. Spirochetes lacking bb0318 were found to have a 100-fold-higher 50% infectious dose than spirochetes containing bb0318 . In addition, at a high inoculum dose, bb0318 was found to be important for effective spirochete dissemination to deep tissues for as long as 3 weeks postinoculation and to be critical for B. burgdorferi infection of mouse hearts. Together, these data implicate bb0318 in the oxidative stress response of B. burgdorferi and indicate the contribution of bb0318 to B. burgdorferi mammalian infectivity.


Sign in / Sign up

Export Citation Format

Share Document