scholarly journals Distribution and vulnerability of transcriptional outputs across the genome in Myc-amplified medulloblastoma cells

2021 ◽  
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Paula Greer ◽  
...  

Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes1-4. While it is well established that Myc functions by binding to its target genes to regulate their transcription5, the distribution of the transcriptional output across the human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals that a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructure, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly only in genes involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on infrastructure genes, which was accompanied by the abrogation of MB cells proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, provide new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in cancer cells empowered by a high level of Myc oncoprotein.

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i5-i5
Author(s):  
Rui Yang ◽  
Wenzhe Wang ◽  
Meichen Dong ◽  
Kristen Roso ◽  
Xuhui Bao ◽  
...  

Abstract Myc plays a central role in tumorigenesis by orchestrating the expression of genes essential to numerous cellular processes. While it is well established that Myc functions by binding to its target genes to regulate their transcription, the distribution of the transcriptional output across human genome in Myc-amplified cancer cells, and the susceptibility of such transcriptional outputs to therapeutic interferences remain to be fully elucidated. Here, we analyze the distribution of transcriptional outputs in Myc-amplified medulloblastoma (MB) cells by profiling nascent total RNAs within a temporal context. This profiling reveals a major portion of transcriptional action in these cells was directed at the genes fundamental to cellular infrastructures, including rRNAs and particularly those in the mitochondrial genome (mtDNA). Notably, even when Myc protein was depleted by as much as 80%, the impact on transcriptional outputs across the genome was limited, with notable reduction mostly in genes of involved in ribosomal biosynthesis, genes residing in mtDNA or encoding mitochondria-localized proteins, and those encoding histones. In contrast to the limited direct impact of Myc depletion, we found that the global transcriptional outputs were highly dependent on the activity of Inosine Monophosphate Dehydrogenases (IMPDHs), rate limiting enzymes for de novo guanine nucleotide synthesis and whose expression in tumor cells was positively correlated with Myc’s expression. Blockage of IMPDHs attenuated the global transcriptional outputs with a particularly strong inhibitory effect on the aforementioned infrastructure genes, which was accompanied by the abrogation of MB cell’s proliferation in vitro and in vivo. Together, our findings reveal a real time action of Myc as a transcriptional factor in tumor cells, gain new insight into the pathogenic mechanism underlying Myc-driven tumorigenesis, and support IMPDHs as a therapeutic vulnerability in MB cells empowered by a high level of Myc oncoprotein.


2016 ◽  
Vol 21 (5) ◽  
pp. 250-252
Author(s):  
N. Yu Anisimova ◽  
M. V Kiselevskiy ◽  
Amir G. Abdullaev ◽  
N. V Malakhova ◽  
S. M Sitdikova ◽  
...  

Introduction. Results of the systemic chemotherapy in the peritoneum canceromatosis are unsatisfactory because of poor penetration of anticancer drugs in serous cavities due to the presence ofperitoneal-plasma barrier. One of the possible ways to enhance the action cytostatic agents is the use of chemotherapy and hyperthermia, which, according to some data, has an own cytotoxic effect. The purpose of the study. The study of the effect ofdifferent modes of hyperthermia on the physiological activity of transplantable lines of tumor and non-transformed cells. Results. Analysis of the impact of hyperthermia on the physiological activity of transplantable lines of tumor and the non-transformed cells in vitro and in vivo studies demonstrated that along with the gain in the level and time of the temperature exposure as the degree of damage as tumor cell mortality rate increases. In this study the most effective treatment was as follows: the temperature is above 45°C with the exposure of more than 2 hours, which is difficult to achieve in practice due to the limited tolerance of healthy tissues. Conclusion. With the use of hyperthermia in monoregimen it is not possible to achieve effective levels of the temperature impact, which could hardly have a significant inhibitory effect on tumor cells.


2017 ◽  
Vol 71 (1) ◽  
pp. 0-0 ◽  
Author(s):  
Agata Jarząb ◽  
Aneta Grabarska ◽  
Krystyna Skalicka-Woźniak ◽  
Andrzej Stepulak

Coumarins are a group of naturally occurring compounds common in the plant world. These substances and their derivatives exhibit a broad range of biological activities.One of the naturally occurring coumarins is osthole, which can most frequently be found in plants of the Apiaceae family. Cnidium monnieri (L.) Cusson ex Juss. Angelica pubescens Maxim. and Peucedanum ostruthium (L.). It has anti-proliferative, anti-inflammatory, anti-convulsant, and antiallergic properties; apart from that, inhibition of platelet aggregation has also been proved. The impact of osthole on bone metabolism has been demonstrated; also its hepatoprotective and neuroprotective properties have been confirmed. The inhibitory effect of this metokcompound on the development of neurodegenerative diseases has been proved in experimental models. Anticancer features of osthole have been also demonstrated both in vitro on different cell lines, and in vivo using animals xenografts. Osthole inhibited proliferation, motility and invasiveness of tumor cells, which may be associated with the induction of apoptosis and cell cycle slowdown. The exact molecular mechanism of osthole anti-cancer mode of action has not been fully elucidated. A synergistic effect of osthole with other anti-tumor substances has been also reported. Modification of its chemical structure led to the synthesis of many derivatives with significant anticancer effects.To sum up, osthole is an interesting therapeutic option, due to both its direct effect on tumor cells, as well as its neuroprotective or anti-inflammatory properties. Thus, there is a chance to use osthole or its synthetic derivatives in the treatment of cancer.


2022 ◽  
Vol 22 ◽  
Author(s):  
Meng Li ◽  
Jiang Chang ◽  
Honglin Ren ◽  
Defeng Song ◽  
Jian Guo ◽  
...  

Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


2021 ◽  
Author(s):  
Huazhen Xu ◽  
Tongfei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background: Tumor-associated macrophages (TAM) are the most abundant stromal cells in the tumor microenvironment. Turning the TAM against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAM into the anti-tumor M1 phenotype. Results: Nano-DOX were first shown to stimulate the tumor cells and the TAM to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAM. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAM both by blocking Nano-DOX-induced PD-L1 in the TAM and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAM with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAM to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAM, achieves enhanced activation of TAM-mediated anti-tumor response.


2005 ◽  
Vol 25 (9) ◽  
pp. 3461-3474 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Fan Zhang ◽  
Gwo Jiunn Hwang ◽  
Mark J. Swanson ◽  
...  

ABSTRACT Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.


2017 ◽  
Vol 13 (6) ◽  
pp. 4762-4768 ◽  
Author(s):  
Ying Wang ◽  
Shoujun Yuan ◽  
Linna Li ◽  
Dexuan Yang ◽  
Chengwang Xu ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 254 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.


2000 ◽  
Vol 278 (4) ◽  
pp. F613-F619 ◽  
Author(s):  
Alexander Shigaev ◽  
Carol Asher ◽  
Hedva Latter ◽  
Haim Garty ◽  
Eitan Reuveny

Aldosterone is the major corticosteroid regulating Na+ absorption in tight epithelia and acts primarily by activating the epithelial Na+ channel (ENaC) through unknown induced proteins. Recently, it has been reported that aldosterone induces the serum- and glucocorticoid-dependent kinase sgk and that coexpressing ENaC with this kinase in Xenopus laevis oocytes increases the amiloride-sensitive Na+current (Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, and Pearce D. Proc Natl Acad Sci USA 96: 2514–2519, 1999). The present study was done to further characterize regulation of sgk by aldosterone in native mammalian epithelia and to examine its effect on ENaC. With both in vivo and in vitro protocols, an almost fivefold increase in the abundance of sgk mRNA has been demonstrated in rat kidney and colon but not in lung. Induction of sgk by aldosterone was detected in kidney cortex and medulla, whereas the papilla expressed a constitutively high level of the kinase. The increase in sgkmRNA was detected as early as 30 min after the hormonal application and was independent of de novo protein synthesis. The observed aldosterone dose-response relationships suggest that the response is mediated, at least in part, by occupancy of the mineralocorticoid receptor. Coexpressing sgk and ENaC in Xenopus oocytes evoked a fourfold increase in the amiloride-blockable Na+ channel activity. A point mutation in the β-subunit known to impair regulation of the channel by Nedd4 (Y618A) had no significant effect on the response to sgk.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1727-1727
Author(s):  
Manuel Schmidt ◽  
Javier de Cristobal ◽  
Astrid Sander ◽  
Bernadette Brzezicha ◽  
Sven A. König Merediz ◽  
...  

Abstract Cytosine-guanine (CpG) motifs containing oligonucleotides (ODN) are commonly used for immunomodulatory purpose in cancer therapy and for the treatment of allergic diseases since they resemble bacterial DNA and serve as “danger signals”. These CpG-ODNs promote predominately a TH1-response with secretion of IL-12 and IFN-γ, In addition their broad potential includes activation of B-cell proliferation, monocyte stimulation and secretion of IgM and IL-6, and stimulation of plasmacytoid DC to produce IFN-α/-β and thus γδT-cells and NK-cells to express CD69 and secrete IFN-γ. Usually phosphorothioate (PS) modifications are to enhance the stability, but these are leading to several side-effects, like severe organ enlargements, morphological changes and immunosuppression in mice. We designed immunomodulatory molecules based on short covalently-closed dumbbell-like structures (dSLIM) to stabilize the DNA without the otherwise necessary PS-modification. To evaluate the anti-tumor effect of the dSLIM molecules we developed an in vitro anti-tumor assay. This assay uses supernatant from dSLIM-activated human PBMCs for incubation with tumor cells in vitro. We observed increased apoptosis and necrosis of the HT-29 tumor cell line after incubation with supernatant from dSLIM-treated PBMC which was significantly higher than the effect of supernatant from non-treated PBMC. In addition, supernatant from dSLIM-treated PBMC increased the expression of HLA-ABC on the tumor cells, a pre-requisite for tumor cell recognition by the immune system. These effects were confirmed with human HEK293 and murine Renca cell lines. Analyzing the effect with neutralizing antibodies to various apoptosis-related cytokines, we observed a crucial role of IFN-γ but not IFN-α or TNFα. To investigate the anti-tumor effects of dSLIM in vivo, we employed a SKH1 murine model which is prone to spontaneous development of papillomas. Using chemicals for initiation and weekly promotion of de novo papilloma development we compared groups of weekly s.c. or i.p. dSLIM injections, respectively, with the PBS control group. The number of papilloma developing mice was significantly lower in the dSLIM groups and the total number of papillomas on all mice was reduced by approximately 50%. In conclusion, we showed that dSLIM immunomodulators exhibit potent anti-tumor effects in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document