A novel EH domain protein of Saccharomyces cerevisiae, Ede1p, involved in endocytosis

2000 ◽  
Vol 113 (18) ◽  
pp. 3309-3319 ◽  
Author(s):  
B. Gagny ◽  
A. Wiederkehr ◽  
P. Dumoulin ◽  
B. Winsor ◽  
H. Riezman ◽  
...  

Sequencing of the entire genome of S. cerevisiae has revealed the existence of five proteins containing EH domains. These are protein-protein interaction modules first described in mammalian Eps15, a protein that is involved in clathrin-dependent endocytosis. Two of the yeast proteins, End3p and Pan1p, are required for the internalization step of endocytosis. We report characterization of the nonessential ORF YBL047c which, like Eps15, encodes a protein with three N-terminal EH domains. Deletion of YBL047c leads to a defective fluid-phase endocytosis and to defective internalization of the pheromone (alpha)-factor and uracil permease. We therefore named YBL047c EDE1, for EH Domains and Endocytosis. Ede1p expressed as a chromosomally encoded fusion to the green fluorescent protein is localized in punctate cortical spots that only partially colocalize with actin patches. This localization is maintained when actin is depolymerized. Deletion of EDE1 impairs the diploid budding pattern, but has only a small impact on actin cytoskeleton organization, in contrast to the effects observed in pan1 cells and many end mutants impaired in proteins colocalizing with cortical actin patches. Genetic interaction was observed between EDE1 and RSP5, which encodes the ubiquitin ligase Rsp5p essential for ubiquitin-dependent endocytosis of many plasma membrane proteins, thus further emphasizing the functional link between Rsp5p and the EH domain proteins. We also observed genetic interaction between EDE1, and END3 or PAN1, suggesting that Ede1p might be part of a yeast EH network implicated in endocytosis.

2000 ◽  
Vol 20 (1) ◽  
pp. 12-25 ◽  
Author(s):  
Hsin-Yao Tang ◽  
Jing Xu ◽  
Mingjie Cai

ABSTRACT The EH domain proteins Pan1p and End3p of budding yeast have been known to form a complex in vivo and play important roles in organization of the actin cytoskeleton and endocytosis. In this report, we describe new findings concerning the function of the Pan1p-End3p complex. First, we found that the Pan1p-End3p complex associates with Sla1p, another protein known to be required for the assembly of cortical actin structures. Sla1p interacts with the first long repeat region of Pan1p and the N-terminal EH domain of End3p, thus leaving the Pan1p-End3p interaction, which requires the second long repeat of Pan1p and the C-terminal repeat region of End3p, undisturbed. Second, Pan1p, End3p, and Sla1p are also required for normal cell wall morphogenesis. Each of the Pan1-4, sla1Δ, andend3Δ mutants displays the abnormal cell wall morphology previously reported for the act1-1 mutant. These cell wall defects are also exhibited by wild-type cells overproducing the C-terminal region of Sla1p that is responsible for interactions with Pan1p and End3p. These results indicate that the functions of Pan1p, End3p, and Sla1p in cell wall morphogenesis may depend on the formation of a heterotrimeric complex. Interestingly, the cell wall abnormalities exhibited by these cells are independent of the actin cytoskeleton organization on the cell cortex, as they manifest despite the presence of apparently normal cortical actin cytoskeleton. Examination of several act1 mutants also supports this conclusion. These observations suggest that the Pan1p-End3p-Sla1p complex is required not only for normal actin cytoskeleton organization but also for normal cell wall morphogenesis in yeast.


1999 ◽  
Vol 146 (2) ◽  
pp. 453-464 ◽  
Author(s):  
Angelika Konzok ◽  
Igor Weber ◽  
Evelyn Simmeth ◽  
Ulrike Hacker ◽  
Markus Maniak ◽  
...  

The 64-kD protein DAip1 from Dictyostelium contains nine WD40-repeats and is homologous to the actin-interacting protein 1, Aip1p, from Saccharomyces cerevisiae, and to related proteins from Caenorhabditis, Physarum, and higher eukaryotes. We show that DAip1 is localized to dynamic regions of the cell cortex that are enriched in filamentous actin: phagocytic cups, macropinosomes, lamellipodia, and other pseudopodia. In cells expressing green fluorescent protein (GFP)-tagged DAip1, the protein rapidly redistributes into newly formed cortical protrusions. Functions of DAip1 in vivo were assessed using null mutants generated by gene replacement, and by overexpressing DAip1. DAip1-null cells are impaired in growth and their rates of fluid-phase uptake, phagocytosis, and movement are reduced in comparison to wild-type rates. Cytokinesis is prolonged in DAip1-null cells and they tend to become multinucleate. On the basis of similar results obtained by DAip1 overexpression and effects of latrunculin-A treatment, we propose a function for DAip1 in the control of actin depolymerization in vivo, probably through interaction with cofilin. Our data suggest that DAip1 plays an important regulatory role in the rapid remodeling of the cortical actin meshwork.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


1998 ◽  
Vol 111 (7) ◽  
pp. 897-905 ◽  
Author(s):  
L.E. Via ◽  
R.A. Fratti ◽  
M. McFalone ◽  
E. Pagan-Ramos ◽  
D. Deretic ◽  
...  

One of the major mechanisms permitting intracellular pathogens to parasitize macrophages is their ability to alter maturation of the phagosome or affect its physical integrity. These processes are opposed by the host innate and adaptive immune defenses, and in many instances mononuclear phagocytes can be stimulated with appropriate cytokines to restrict the growth of the microorganisms within the phagosomal compartment. Very little is known about the effects that cytokines have on phagosome maturation. Here we have used green fluorescent protein (GFP)-labeled mycobacteria and a fixable acidotropic probe, LysoTracker Red DND-99, to monitor maturation of the mycobacterial phagosome. The macrophage compartments that stained with the LysoTracker probe were examined first. This dye was found to colocalize preferentially with the late endosomal and lysosomal markers rab7 and Lamp1, and with a fluid phase marker chased into the late endosomal compartments. In contrast, LysoTracker showed only a minor overlap with the early endosomal marker rab5. Pathogenic mycobacteria are believed to reside in nonacidified vacuoles sequestered away from late endosomal compartments as a part of their intracellular survival strategy. We examined the status of mycobacterial phagosomes in macrophages from IL-10 knockout mice, in quiescent cells, and in mononuclear phagocytes stimulated with the macrophage-activating cytokine IFN-(gamma). When macrophages were derived from the bone marrow of transgenic IL-10 mice lacking this major deactivating cytokine, colocalization of GFP-fluorescing mycobacteria with the LysoTracker staining appeared enhanced, suggestive of increased acidification of the mycobacterial phagosome relative to macrophages from normal mice. When bone marrow-derived macrophages from normal mice or a J774 murine macrophage cell line were stimulated with IFN-(gamma) and LPS, this resulted in increased colocalization of mycobacteria and LysoTracker, but no statistically significant enhancement was observed in IL-10 transgenic animals. These studies are consistent with the interpretation that proinflammatory and anti-inflammatory cytokines affect maturation of mycobacterial phagosomes. Although multiple mechanisms are likely to be at work, we propose the existence of a direct link between cytokine effects on the host cell and phagosome maturation in the macrophage.


1998 ◽  
Vol 141 (7) ◽  
pp. 1529-1537 ◽  
Author(s):  
Barbara Peracino ◽  
Jane Borleis ◽  
Tian Jin ◽  
Monika Westphal ◽  
Jean-Marc Schwartz ◽  
...  

Chemotaxis and phagocytosis are basically similar in cells of the immune system and in Dictyostelium amebae. Deletion of the unique G protein β subunit in D. discoideum impaired phagocytosis but had little effect on fluid-phase endocytosis, cytokinesis, or random motility. Constitutive expression of wild-type β subunit restored phagocytosis and normal development. Chemoattractants released by cells or bacteria trigger typical transient actin polymerization responses in wild-type cells. In β subunit–null cells, and in a series of β subunit point mutants, these responses were impaired to a degree that correlated with the defect in phagocytosis. Image analysis of green fluorescent protein–actin transfected cells showed that β subunit– null cells were defective in reshaping the actin network into a phagocytic cup, and eventually a phagosome, in response to particle attachment. Our results indicate that signaling through heterotrimeric G proteins is required for regulating the actin cytoskeleton during phagocytic uptake, as previously shown for chemotaxis. Inhibitors of phospholipase C and intracellular Ca2+ mobilization inhibited phagocytosis, suggesting the possible involvement of these effectors in the process.


2002 ◽  
Vol 156 (4) ◽  
pp. 665-676 ◽  
Author(s):  
Francesca Santini ◽  
Ibragim Gaidarov ◽  
James H. Keen

Nonvisual arrestins (arr) modulate G protein–coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing β2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3–GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16°C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.


2012 ◽  
Vol 23 (11) ◽  
pp. 2198-2212 ◽  
Author(s):  
Jason G. Kay ◽  
Mirkka Koivusalo ◽  
Xiaoxiao Ma ◽  
Thorsten Wohland ◽  
Sergio Grinstein

Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes—green fluorescent protein (GFP)–LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-l-serine (TopFluor-PS), a synthetic fluorescent PS analogue—to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid.


2007 ◽  
Vol 18 (12) ◽  
pp. 4762-4771 ◽  
Author(s):  
Neil M. Goldenberg ◽  
Sergio Grinstein ◽  
Mel Silverman

Golgi-localized Rab34 has been implicated in repositioning lysosomes and activation of macropinocytosis. Using HeLa cells, we undertook a detailed investigation of Rab34 involvement in intracellular vesicle transport. Immunoelectron microscopy and immunocytochemistry confirmed that Rab34 is localized to the Golgi stack and that active Rab34 shifts lysosomes to the cell center. Contrary to a previous report, we found that Rab34 is not concentrated at membrane ruffles and is not involved in fluid-phase uptake. Also, Rab34-induced repositioning of lysosomes does not affect mannose 6-phosphate receptor trafficking. Most strikingly, HeLa cells depleted of Rab34 by transfection with dominant-negative Rab34 or after RNA interference, failed to transport the temperature-sensitive vesicular stomatitis virus G-protein (VSVG) fused to green fluorescent protein (VSVG-GFP) from the Golgi to the plasma membrane. Transfection with mouse Rab34 rescued this defect. Using endogenous major histocompatibility complex class I (MHCI) as a marker, an endoglycosidase H resistance assay showed that endoplasmic reticulum (ER) to medial Golgi traffic remains intact in knockdown cells, indicating that Rab34 specifically functions downstream of the ER. Further, brefeldin A treatment revealed that Rab34 effects intra-Golgi transport, not exit from the trans-Golgi network. Collectively, these results define Rab34 as a novel member of the secretory pathway acting at the Golgi.


2014 ◽  
Vol 14 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Areti Gkourtsa ◽  
Janny van den Burg ◽  
Karin Strijbis ◽  
Teja Avula ◽  
Sietske Bijvoets ◽  
...  

ABSTRACT Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861). We show that Rvs167-3 specifically interacts with Rvs162 to form a stable BAR heterodimer able to bind liposomes in vitro . A second, distinct heterodimer is formed by the canonical BAR proteins Rvs161 and Rvs167. Purified Rvs161/Rvs167 complex also binds liposomes, indicating that C. albicans expresses two functional BAR heterodimers. We used live-cell imaging to localize green fluorescent protein (GFP)-tagged Rvs167-3 and Rvs167 and show that both proteins concentrate in small cortical spots. However, while Rvs167 strictly colocalizes with the endocytic marker protein Abp1, we do not observe any colocalization of Rvs167-3 with sites of endocytosis marked by Abp1. Furthermore, the rvs167-3 Δ/Δ mutant is not defective in endocytosis and strains lacking Rvs167-3 or its partner Rvs162 do not display increased sensitivity to high salt concentrations or decreased cell wall integrity, phenotypes which have been observed for rvs167 Δ/Δ and rvs161 Δ/Δ strains and which are linked to endocytosis defects. Taken together, our results indicate different roles for the two BAR heterodimers in C. albicans : the canonical Rvs161/Rvs167 heterodimer functions in endocytosis, whereas the novel Rvs162/Rvs167-3 heterodimer seems not to be involved in this process. Nevertheless, despite their different roles, our phenotypic analysis revealed a genetic interaction between the two BAR heterodimers, suggesting that they may have related but distinct membrane-associated functions.


Sign in / Sign up

Export Citation Format

Share Document