The armadillo repeat region targets ARVCF to cadherin-based cellular junctions

2000 ◽  
Vol 113 (22) ◽  
pp. 4121-4135 ◽  
Author(s):  
U. Kaufmann ◽  
C. Zuppinger ◽  
Z. Waibler ◽  
M. Rudiger ◽  
C. Urbich ◽  
...  

The cytoplasmic domain of the transmembrane protein M-cadherin is involved in anchoring cytoskeletal elements to the plasma membrane at cell-cell contact sites. Several members of the armadillo repeat protein family mediate this linkage. We show here that ARVCF, a member of the p120 (ctn) subfamily, is a ligand for the cytoplasmic domain of M-cadherin, and characterize the regions involved in this interaction in detail. Complex formation in an in vivo environment was demonstrated in (1) yeast two-hybrid screens, using a cDNA library from differentiating skeletal muscle and part of the cytoplasmic M-cadherin tail as a bait, and (2) mammalian cells, using a novel experimental system, the MOM recruitment assay. Immunoprecipitation and in vitro binding assays confirmed this interaction. Ectopically expressed EGFP-ARVCF-C11, an N-terminal truncated fragment, targets to junctional structures in epithelial MCF7 cells and cardiomyocytes, where it colocalizes with the respective cadherins, beta-catenin and p120 (ctn). Hence, the N terminus of ARVCF is not required for junctional localization. In contrast, deletion of the four N-terminal armadillo repeats abolishes this ability in cardiomyocytes. Detailed mutational analysis revealed the armadillo repeat region of ARVCF as sufficient and necessary for interaction with the 55 membrane-proximal amino acids of the M-cadherin tail.

1996 ◽  
Vol 109 (13) ◽  
pp. 3069-3078 ◽  
Author(s):  
R.B. Troyanovsky ◽  
N.A. Chitaev ◽  
S.M. Troyanovsky

Plakoglobin directly interacts with cadherins and plays an essential role in the assembly of adherens junctions and desmosomes. Recently we have reported that multiple cadherin binding sites are localized along the arm repeat region of plakoglobin. To demonstrate functionally and specificity of these sites in vivo we constructed a set of chimeric proteins containing a plakoglobin sequence fused with the transmembrane vesicular protein synaptophysin. Plakoglobin fused upstream or downstream from synaptophysin (PgSy and SyPg, chimeras, respectively) is exposed on the cytoplasmic surface of synaptic-like vesicles and is able to associate with E-cadherin, and with two desmosomal cadherins, desmoglein and desmocollin. Moreover, plakoglobin targets these vesicles to cell-cell junctions. Insertion of synaptophysin within plakoglobin (PSyG chimeras) can interfere with cadherin binding of the resulting chimeric proteins, dependent on the position of the insertion. Insertion of synaptophysin in the first three arm repeats selectively inactivates plakoglobin binding to desmoglein and desmocollin. An insertion of synaptophysin within the next two repeats inactivates E-cadherin and desmocollin binding but not desmoglein binding. This localization of the desmoglein and E-cadherin binding sites was further confirmed by replacement of plakoglobin arm repeats with the corresponding sequence derived from the plakoglobin homologue, beta-catenin, and by deletion mutagenesis. Insertion of synaptophysin in most sites within arm repeats 6–13 does not change plakoglobin binding to cadherins. It does, however, strongly inhibit association of the resulting vesicles either with desmosomes and adherens junctions or with desmosomes only. Using in vitro binding assays we demonstrate that arm repeats 6–13 contain two cryptic cadherin binding sites that are masked in the intact protein. These observations suggest that the arm repeat region of plakoglobin is comprises two functionally distinct regions: the 1/5 region containing desmoglein and E-cadherin specific binding sites and the 6/13 region implicated in targeting of plakoglobin/cadherin complexes into junctional structures.


1994 ◽  
Vol 107 (12) ◽  
pp. 3655-3663 ◽  
Author(s):  
H. Aberle ◽  
S. Butz ◽  
J. Stappert ◽  
H. Weissig ◽  
R. Kemler ◽  
...  

The cytoplasmic domain of classical cadherins is tightly associated with three proteins termed alpha-, beta- and gamma-catenin. These accessory proteins are of central importance for the adhesive properties of this class of cell adhesion molecules. In order to examine the molecular architecture of the cadherin-catenin complex in more detail we have expressed the catenins and the cytoplasmic domain of E-cadherin as fusion proteins in Escherichia coli, and analyzed the interaction of purified recombinant cadherin and catenins in combinatorial protein-protein interaction experiments. The cytoplasmic domain of E-cadherin cannot directly associate with alpha-catenin but interacts with high affinity with beta-catenin, whereas the binding of gamma-catenin (plakoglobin) to E-cadherin is less efficient. alpha- and beta-catenin assemble into a 1:1 heterodimeric complex. The analysis of various truncated beta-catenins revealed that an alpha-catenin binding site in beta-catenin is localized between amino acid positions 120 and 151. The central role of beta-catenin for the assembly of the heterotrimeric E-cadherin/alpha-catenin/beta-catenin complex in mixing experiments with all components was demonstrated. The reconstitution in vitro of the cadherin-catenin complex should allow the study of the interaction with signalling molecules and with the actin-based cytoskeleton.


1996 ◽  
Vol 109 (11) ◽  
pp. 2767-2778 ◽  
Author(s):  
M. Hatzfeld ◽  
C. Nachtsheim

Cell contacts of the adherens type are organized around transmembrane proteins of the cadherin family. Whereas the extracellular domains mediate homophilic interactions between cadherins of neighbouring cells the cytoplasmic domains organize a set of proteins into the junctional plaque. Among these junctional plaque proteins are members of the armadillo gene family, beta-catenin, plakoglobin (gamma-catenin), B6P/plakophilin and p120. These proteins are assumed to play a key role in cell cell signalling through intercellular junctions. Here we report cloning of a cDNA encoding a new armadillo family member, p0071, closely related to p120 and B6P/plakophilin and more distantly related to armadillo, plakoglobin, beta-catenin and other members of the gene family. The deduced amino acid sequence encodes a basic protein of 1,211 amino acids with a central armadillo repeat region which is conserved in sequence and organization of its ten individual motifs between p120, B6P/plakophilin and p0071. In contrast the end domains of the three proteins are variable in size and sequence. The RNA coding for p0071 is expressed in all tissues examined. Using antibodies generated against the armadillo repeat region of the protein we show that p0071 is localized at cell-cell borders and is expressed in the desmosomal plaque of some cultured epithelial cells. The protein seems to be an accessory component of the desmosomal plaque as well as of other adhesion plaques and might be involved in regulating junctional plaque organization and cadherin function. Our data provide evidence for a subfamily of armadillo related proteins that share not only structural features but also have in common their localisation in the junctional plaque. We therefore suggest that family members exert similar functions and might be involved in cell signalling through cell contacts.


1992 ◽  
Vol 12 (11) ◽  
pp. 5024-5032
Author(s):  
R Bassel-Duby ◽  
M D Hernandez ◽  
M A Gonzalez ◽  
J K Krueger ◽  
R S Williams

To define transcriptional control elements responsible for muscle-specific expression of the human myoglobin gene, we performed mutational analysis of upstream sequences (nucleotide positions -373 to +7 relative to the transcriptional start site) linked to a firefly luciferase gene. Transient expression assays in avian and mammalian cells indicated that a CCCACCCCC (CCAC box) sequence (-223 to -204) is necessary for muscle-specific transcription directed either by the native myoglobin promoter or by a heterologous minimal promoter linked to the myoglobin upstream enhancer region. A putative MEF2-like site (-160 to -169) was likewise necessary for full transcriptional activity in myotubes. Mutations within either of two CANNTG (E-box) motifs (-176 to -148) had only minimal effects on promoter function. We identified and partially purified from nuclear extracts a 40-kDa protein (CBF40) that binds specifically to oligonucleotides containing the CCAC box sequence. A mutation of the CCAC box that disrupted promoter function in vivo also impaired binding of CBF40 in vitro. These data suggest that cooperative interactions between CBF40 and other factors including MEF-2 are required for expression of the human myoglobin gene in skeletal muscle.


1995 ◽  
Vol 128 (5) ◽  
pp. 959-968 ◽  
Author(s):  
N Funayama ◽  
F Fagotto ◽  
P McCrea ◽  
B M Gumbiner

beta-catenin was identified as a cytoplasmic cadherin-associated protein required for cadherin adhesive function (Nagafuchi, A., and M. Takeichi. 1989. Cell Regul. 1:37-44; Ozawa, M., H. Baribault, and R. Kemler. 1989. EMBO [Eur. Mol. Biol. Organ.] J. 8:1711-1717). Subsequently, it was found to be the vertebrate homologue of the Drosophila segment polarity gene product Armadillo (McCrea, P. D., C. W. Turck, and B. Gumbiner. 1991. Science [Wash. DC]. 254:1359-1361; Peifer, M., and E. Wieschaus. 1990. Cell. 63:1167-1178). Also, antibody perturbation experiments implicated beta-catenin in axial patterning of the early Xenopus embryo (McCrea, P. D., W. M. Brieher, and B. M. Gumbiner. 1993. J. Cell Biol. 123:477-484). Here we report that overexpression of beta-catenin in the ventral side of the early Xenopus embryo, by injection of synthetic beta-catenin mRNA, induces the formation of a complete secondary body axis. Furthermore, an analysis of beta-catenin deletion constructs demonstrates that the internal armadillo repeat region is both necessary and sufficient to induce axis duplication. This region interacts with C-cadherin and with the APC tumor suppressor protein, but not with alpha-catenin, that requires the amino-terminal region of beta-catenin to bind to the complex. Since alpha-catenin is required for cadherin-mediated adhesion, the armadillo repeat region alone probably cannot promote cell adhesion, making it unlikely that beta-catenin induces axis duplication by increasing cell adhesion. We propose, rather, that beta-catenin acts in this circumstance as an intracellular signaling molecule. Subcellular fractionation demonstrated that all of the beta-catenin constructs that contain the armadillo repeat domain were present in both the soluble cytosolic and the membrane fraction. Immunofluorescence staining confirmed the plasma membrane and cytoplasmic localization of the constructs containing the armadillo repeat region, but revealed that they also accumulate in the nucleus, especially the construct containing only the armadillo repeat domain. These findings and the beta-catenin protein interaction data offer several intriguing possibilities for the site of action or the protein targets of beta-catenin signaling activity.


2020 ◽  
Vol 117 (12) ◽  
pp. 6811-6821 ◽  
Author(s):  
Jonathan P. Allen ◽  
Egon A. Ozer ◽  
George Minasov ◽  
Ludmilla Shuvalova ◽  
Olga Kiryukhina ◽  
...  

Emerging evidence suggests thePseudomonas aeruginosaaccessory genome is enriched with uncharacterized virulence genes. Identification and characterization of such genes may reveal novel pathogenic mechanisms used by particularly virulent isolates. Here, we utilized a mouse bacteremia model to quantify the virulence of 100 individualP. aeruginosabloodstream isolates and performed whole-genome sequencing to identify accessory genomic elements correlated with increased bacterial virulence. From this work, we identified a specific contact-dependent growth inhibition (CDI) system enriched among highly virulentP. aeruginosaisolates. CDI systems contain a large exoprotein (CdiA) with a C-terminal toxin (CT) domain that can vary between different isolates within a species. Prior work has revealed that delivery of a CdiA-CT domain upon direct cell-to-cell contact can inhibit replication of a susceptible target bacterium. Aside from mediating interbacterial competition, we observed our virulence-associated CdiA-CT domain to promote toxicity against mammalian cells in culture and lethality during mouse bacteremia. Structural and functional studies revealed this CdiA-CT domain to have in vitro tRNase activity, and mutations that abrogated this tRNAse activity in vitro also attenuated virulence. Furthermore, CdiA contributed to virulence in mice even in the absence of contact-dependent signaling. Overall, our findings indicate that thisP. aeruginosaCDI system functions as both an interbacterial inhibition system and a bacterial virulence factor against a mammalian host. These findings provide an impetus for continued studies into the complex role of CDI systems inP. aeruginosapathogenesis.


1999 ◽  
Vol 112 (18) ◽  
pp. 3005-3014 ◽  
Author(s):  
N. Ilan ◽  
S. Mahooti ◽  
D.L. Rimm ◽  
J.A. Madri

Catenins function as regulators of cellular signaling events in addition to their previously documented roles in adherens junction formation and function. Evidence to date suggests that beta and gamma catenins can act as signaling molecules, bind transcriptional factors and translocate to the nucleus. Beta- and gamma-catenin are also major substrates for protein tyrosine kinases, and tyrosine phosphorylation of junctional proteins is correlated with decreased adhesiveness. One way in which catenin functions are modulated is by dynamic incorporation into junctional complexes which controls, in part, the cytoplasmic levels of catenins. Here we show that: (1) vascular endothelial growth factor (VEGF) induces beta-catenin tyrosine phosphorylation in a time-, and dose-dependent manner and that VEGF receptors co-localize to areas of endothelial cell-cell contact in vitro and in vivo. (2) Platelet-endothelial cell adhesion molecule (PECAM)-1 can function as a reservoir for, and modulator of, tyrosine phosphorylated beta-catenin. (3) PECAM-1 can prevent beta-catenin nuclear translocation in transfected SW480 colon carcinoma cells. We suggest that PECAM-1 may play a role in modulating beta-catenin tyrosine phosphorylation levels, localization and signaling and by doing so, functions as an important modulator of the endothelium.


1997 ◽  
Vol 110 (15) ◽  
pp. 1759-1765 ◽  
Author(s):  
O. Huber ◽  
M. Krohn ◽  
R. Kemler

The E-cadherin-catenin adhesion complex has been the subject of many structural and functional studies because of its importance in development, normal tissue function and carcinogenesis. It is well established that the cytoplasmic domain of E-cadherin binds either beta-catenin or plakoglobin, which both can assemble alpha-catenin into the complex. Recently we have identified an alpha-catenin binding site in beta-catenin and plakoglobin and postulated, based on sequence analysis, that these protein-protein interactions are mediated by a hydrophobic interaction mechanism. Here we have now identified the reciprocal complementary binding site in alpha-catenin which mediates its interaction with beta-catenin and plakoglobin. Using in vitro association assays with C-terminal truncations of alpha-catenin expressed as recombinant fusion proteins, we found that the N-terminal 146 amino acids are required for this interaction. We then identified a peptide of 27 amino acids within this sequence (amino acid positions 117–143) which is necessary and sufficient to bind beta-catenin or plakoglobin. As shown by mutational analysis, hydrophobic amino acids within this binding site are important for the interaction. The results described here, together with our previous work, give strong support for the idea that these proteins associate by hydrophobic interactions of two alpha-helices.


1997 ◽  
Vol 110 (22) ◽  
pp. 2807-2818 ◽  
Author(s):  
M. Sandig ◽  
E. Negrou ◽  
K.A. Rogers

To determine changes in the spatial and temporal distribution of cell-cell adhesion molecules during transendothelial migration of monocytes, we examined an in vitro model system of diapedesis using high resolution laser scanning confocal microscopy. Human arterial endothelial cells were cultured to confluence on coverslips coated with Matrigel and activated with IL-1beta before the addition of monocytic THP-1 cells. Seventy per cent of monocytes transmigrated through the endothelium within one hour. Diapedesis, but not adhesion and spreading, was inhibited 8-fold in co-cultures that contained endothelial cell conditioned medium, suggesting the release of an endothelial derived inhibitor. Double immunofluorescence labeling with antibodies to LFA-1, alpha- and beta-catenin, VE-cadherin and with Texas Red phalloidin, identified a circular transmigration passage in endothelial cell-cell contact regions. This passage was formed by an LFA-1-containing pseudopodium that penetrated between endothelial cells. Apical to the transmigration passage, monocytes remained round in shape, while underneath the endothelium, they spread along the Matrigel. The margins of the transmigration passage contained high levels of LFA-1 and F-actin, suggesting a major role of these molecules during the transmigration process itself. Endothelial adherens junctions, as judged by the presence of VE-cadherin and alpha-catenin adjacent to the passage, remained intact during diapedesis. The presence of catenins at heterotypic contact regions between monocytes and endothelial cells during diapedesis suggested cadherin-mediated interactions between the two cell types. These results reveal dynamic changes in the distribution of adhesion molecules and the actin cytoskeleton during monocyte transendothelial migration in culture.


1996 ◽  
Vol 109 (7) ◽  
pp. 1937-1946 ◽  
Author(s):  
J.W. Fewell ◽  
E.L. Kuff

Ku is a heterodimeric protein first recognized as a human autoantigen but now known to be widely distributed in mammalian cells. Analysis of repair-deficient mutant cells has shown that Ku is required for DNA repair, and roles in DNA replication and transcription have also been suggested on the basis of in vitro observations. Ku is generally regarded as a nuclear component. However, in the present paper, we show that a quantitatively significant fraction (half or more) of Ku is located in the cytoplasm of cultured primate cells, and that major changes in epitope accessibility of both nuclear and cytoplasmic Ku components are associated with the transition from sparse to confluent cell densities. The same changes in immunoreactivity were seen in HeLa, 293, CV-1 (monkey) and HPV-transformed keratinocyte cell lines, and in primary cultures of human keratinocytes. The immunostaining pattern of sparsely grown cells could be converted to the ‘confluent’ configuration by re-plating them at the same low density on a monolayer of mouse 3T3 cells. The confluent antigen pattern could also be induced in sparse cells within 15–30 minutes by exposure of the cells to serum- or Ca(2+)-free medium or overnight with 2 mM hydroxyurea. Somatostatin at 0.12 mM blocked the effects of serum/Ca2+ deprivation of Ku p70 antigen distribution in sparse CV-1 cells, and in confluent cultures reversed the usual nuclear concentration of p70 immunoreactivity. However, somatostatin did not alter the expected immunostaining patterns of p86. Preliminary studies indicate that sparse CV-1 cells, but not HeLa cells, respond to as little as 1 pM of TGF-beta 1 in the culture medium by the rapid appearance of nuclear immunoreactivity. TGF-alpha had no apparent effect. These findings are consistent with the participation of Ku in a signal transduction system responsive to the inhibitory effect of cell-cell contact on the one hand and to cytokines and growth-supportive components of the culture medium on the other.


Sign in / Sign up

Export Citation Format

Share Document