Cadherin binding sites of plakoglobin: localization, specificity and role in targeting to adhering junctions

1996 ◽  
Vol 109 (13) ◽  
pp. 3069-3078 ◽  
Author(s):  
R.B. Troyanovsky ◽  
N.A. Chitaev ◽  
S.M. Troyanovsky

Plakoglobin directly interacts with cadherins and plays an essential role in the assembly of adherens junctions and desmosomes. Recently we have reported that multiple cadherin binding sites are localized along the arm repeat region of plakoglobin. To demonstrate functionally and specificity of these sites in vivo we constructed a set of chimeric proteins containing a plakoglobin sequence fused with the transmembrane vesicular protein synaptophysin. Plakoglobin fused upstream or downstream from synaptophysin (PgSy and SyPg, chimeras, respectively) is exposed on the cytoplasmic surface of synaptic-like vesicles and is able to associate with E-cadherin, and with two desmosomal cadherins, desmoglein and desmocollin. Moreover, plakoglobin targets these vesicles to cell-cell junctions. Insertion of synaptophysin within plakoglobin (PSyG chimeras) can interfere with cadherin binding of the resulting chimeric proteins, dependent on the position of the insertion. Insertion of synaptophysin in the first three arm repeats selectively inactivates plakoglobin binding to desmoglein and desmocollin. An insertion of synaptophysin within the next two repeats inactivates E-cadherin and desmocollin binding but not desmoglein binding. This localization of the desmoglein and E-cadherin binding sites was further confirmed by replacement of plakoglobin arm repeats with the corresponding sequence derived from the plakoglobin homologue, beta-catenin, and by deletion mutagenesis. Insertion of synaptophysin in most sites within arm repeats 6–13 does not change plakoglobin binding to cadherins. It does, however, strongly inhibit association of the resulting vesicles either with desmosomes and adherens junctions or with desmosomes only. Using in vitro binding assays we demonstrate that arm repeats 6–13 contain two cryptic cadherin binding sites that are masked in the intact protein. These observations suggest that the arm repeat region of plakoglobin is comprises two functionally distinct regions: the 1/5 region containing desmoglein and E-cadherin specific binding sites and the 6/13 region implicated in targeting of plakoglobin/cadherin complexes into junctional structures.

2021 ◽  
Author(s):  
Qilin Yu ◽  
William R. Holmes ◽  
Jean P. Thiery ◽  
Rodney B. Luwor ◽  
Vijay Rajagopal

AbstractAdherens junctions (AJs) physically link two cells at their contact interface via extracellular homophilic interactions between cadherin molecules and intracellular connections between cadherins and the actomyosin cortex. Both cadherin and actomyosin cytoskeletal dynamics are reciprocally regulated by mechanical and chemical signals, which subsequently determine the strength of cell-cell adhesions and the emergent organization and stiffness of the tissues they form. However, an understanding of the integrated system is lacking. We present a new mechanistic computational model of intercellular junction maturation in a cell doublet to investigate the mechano-chemical crosstalk that regulates AJ formation and homeostasis. The model couples a 2D lattice-based model of cadherin dynamics with a continuum, reaction-diffusion model of the reorganizing actomyosin network through its regulation by Rho signaling at the intercellular junction. We demonstrate that local immobilization of cadherin induces cluster formation in a cis less dependent manner. We further investigate how cadherin and actin regulate and cooperate. By considering the force balance during AJ maturation and the force-sensitive property of the cadherin/F-actin linking molecules, we show that cortical tension applied on the contact rim can explain the ring distribution of cadherin and F-actin on the cell-cell contact of the cell-doublet. Meanwhile, the positive feedback loop between cadherin and F-actin is necessary for maintenance of the ring. Different patterns of cadherin distribution can be observed as an emergent property of disturbances of this feedback loop. We discuss these findings in light of available experimental observations on underlying mechanisms related to cadherin/F-actin binding and the mechanical environment.Significance StatementThe formation, maintenance and disassembly of adherens junctions (AJs) is fundamental to organ development, tissue integrity as well as tissue function. E-cadherins and F-actin are two major players of the adherens junctions (AJs). Although it is well known that cadherins and F-actin affect each other, how these two players work together to maintain the intercellular contact is unclear. Using a novel mechano-chemical model of E-cadherin and F-actin remodeling, we demonstrate that a positive feedback loop between cadherins and F-actin allows them to stabilize each other locally. Mechanical and chemical stimuli applied to the cell adhesion change E-cadherin and F-actin distribution by consolidating or interrupting the feedback loop locally. Our study mechanistically links mechanical force to E-cadherin patterning at cell-cell junctions.


2004 ◽  
Vol 15 (1) ◽  
pp. 397-406 ◽  
Author(s):  
Sanita Bharti ◽  
Heike Handrow-Metzmacher ◽  
Silvia Zickenheiner ◽  
Andreas Zeitvogel ◽  
Rudolf Baumann ◽  
...  

While searching for potential candidate molecules relevant for the pathogenesis of endometriosis, we discovered a 2910-base pair cDNA encoding a novel putative 411-amino acid integral membrane protein that we called shrew-1. The putative open-reading frame was confirmed with antibodies against shrew-1 peptides that labeled a protein of ∼48 kDa in extracts of shrew-1 mRNA-positive tissue and also detected ectopically expressed shrew-1. Expression of epitope-tagged shrew-1 in epithelial cells and analysis by surface biotinylation and immunoblots demonstrated that shrew-1 is indeed a transmembrane protein. Shrew-1 is able to target to E-cadherin-mediated adherens junctions and interact with the E-cadherin–catenin complex in polarized MCF7 and Madin-Darby canine kidney cells, but not with the N-cadherin–catenin complex in nonpolarized epithelial cells. Direct interaction of shrew-1 with β-catenin in in vitro pull-down assay suggests that β-catenin might be one of the proteins that targets and/or retains shrew-1 in the adherens junctions. Interestingly, shrew-1 was partially translocated in response to scatter factor (ligand of receptor tyrosine kinase c-met) from the plasma membrane to the cytoplasm where it still colocalized with endogenous E-cadherin. In summary, we introduce shrew-1 as a novel component of adherens junctions, interacting with E-cadherin–β-catenin complexes in polarized epithelial cells.


1989 ◽  
Vol 256 (2) ◽  
pp. G436-G441 ◽  
Author(s):  
C. Bianchi ◽  
G. Thibault ◽  
A. De Lean ◽  
J. Genest ◽  
M. Cantin

We have studied the localization and the characterization of atrial natriuretic factor (ANF) binding sites by radioautographic techniques. Quantitative in vitro radioautography with a computerized microdensitometer demonstrated the presence of high-affinity, low-capacity 125I-ANF-(99-126) binding sites (Kd, 48 pM; Bmax, 63 fmol/mg protein) mainly in the villi of 20-microns slide-mounted transverse sections of the rat jejunum. Competition curves showed 50% inhibitory concentrations of 55 and 1,560 pM for ANF-(99-126) and ANF-(103-123), respectively. In vivo electron microscope radioautography showed that 80% of the silver grains were localized on the lamina propria fibroblast-like cells, 18% on mature enterocytes, and 2% on capillaries. Bradykinin and adrenocorticotropin did not compete with ANF binding. These results demonstrate that ANF binding sites in the rat jejunum possess the pharmacological characteristics of functional ANF receptors encountered in other rat tissues, and ultrastructural radioautographs show their cellular distribution. Taken together, these results demonstrate the presence and the localization of specific binding sites for ANF in the jejunal villi of the rat small intestine.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 218-228 ◽  
Author(s):  
H Huebers ◽  
W Bauer ◽  
E Huebers ◽  
E Csiba ◽  
C Finch

Abstract The behavior of rat transferrin has been investigated employing acrylamide gel electrophoresis and isoelectric focusing. In vitro trace labeling with iron chelates at 30 min was 93%-98% effective, whereas binding by simple ferric salts was reduced to 71%-76%. Complete and specific binding of 59FeSO4 by the iron binding sites of transferrin was demonstrated after in vitro or in vivo addition of ferrous ammonium sulfate in pH 2 saline up to the point of iron saturation. In vitro the radioriron transferrin complex in plasma was stable and its iron had a negligible exchange with other transferrin binding sites over several hours. The distribution of radioiron added in vitro or through absorption was shown to be random between the binding sites of slow and fast transferrin molecule. Iron distribution among body tissues was similar for mono- and diferric transferrin iron and was not affected by the site distribution of iron on the transferrin molecule. The only important aspect of transferrin iron binding was the more rapid tissue uptake of iron in the diferric form was compared to monoferric transferrin. Additional in vivo effects on internal iron exchange were produced by changes in the iron balance of the animal. In the iron loaded animal, monoferric transferrin injected into the plasma was rapidly loaded by iron from tissue and thereby converted to diferric transferrin. Injection of diferric transferrin in the iron deficient animal was associated with a rapid disappearance from circulation of the original complex and a subsequent appearance of monoferric transferrin as a result of iron returning from tissues. These observations support the concept that plasma iron behaves as a single pool except that diferric iron exchange occurs at a more rapid rate than dose monoferric iron exchange.


1995 ◽  
Vol 146 (3) ◽  
pp. 459-467 ◽  
Author(s):  
J A Calduch-Giner ◽  
A Sitjà-Bobadilla ◽  
P Álvarez-Pellitero ◽  
J Pérez-Sánchez

Abstract Receptors for GH were characterized in the head kidney of gilthead sea bream (Sparus aurata), using radioiodinated and biotinylated ligands. The specific binding of radiolabelled recombinant gilthead sea bream GH (rsbGH) to head kidney membrane preparations was dependent on membrane concentration. Salmon prolactin, salmon gonadotrophin and carp gonadotrophin did not compete for 125I-labelled rsbGH-binding sites. Unlabelled rsbGH competitively displaced 125I-labelled rsbGH bound to head kidney membranes. Scatchard plots were always linear, denoting the presence of a single class of binding sites. The binding affinity (Ka=2·7 × 109 m−1) was equivalent to that found in liver membrane preparations, but the binding capacity (2·5 ±0·30 fmol/mg protein) was 50- to 75-fold lower. To identify the cells which express the GH receptor, head kidney smears were incubated with biotinylated rsbGH, followed by incubation with an avidin–biotin complex conjugated to alkaline phosphatase. The reaction with the new-fuchsin substrate gave a red precipitate, showing a specific and intense labelling in erythroblasts, polychromatophilic erythroblasts and myeloblasts. Noticeable binding was observed in myelocytes and immature granulocytes, tending to disappear at the latter stages of granulocyte maturation. Light but appreciable binding was also observed in monocytes, lymphocytes and acidophilic erythroblasts, whereas it was completely absent in proerythrocytes and erythrocytes. The proliferative action of rsbGH and recombinant human IGF-I on in vitro cultures of head kidney cells was demonstrated by a 5-bromo-2′-deoxy-uridine immunoassay. To our knowledge, this is the first report that provides suitable evidence for a role of GH as a haemopoietic growth and differentiation factor in lower vertebrate species. Journal of Endocrinology (1995) 146, 459–467


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


2002 ◽  
Vol 80 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Hudson de Sousa Buck ◽  
Brice Ongali ◽  
Gaétan Thibault ◽  
Charles J Lindsey ◽  
Réjean Couture

Kinins have been elected to the status of central neuromediators. Their effects are mediated through the activation of two G-protein-coupled receptors, denoted B1 and B2. Functional and binding studies suggested that B1 and B2 receptors are upregulated in the medulla and spinal cord of hypertensive and diabetic rats. The aim of this study was to localize and quantify kinin receptors in post-mortem human medulla obtained from normotensive, hypertensive, and diabetic subjects, using in vitro receptor autoradiography with the radioligands [125I]HPP-HOE140 (B2 receptor) and [125I]HPP[des-Arg10]-HOE140 (B1 receptor). Data showed specific binding sites for B2 receptor (0.4–1.5 fmol/mg tissue) in 11 medullary nuclei from 4 control specimens (paratrigeminal > ambiguus > cuneate, gelatinous layer of the caudal spinal trigeminal nucleus > caudal and interpolar spinal trigeminal, external cuneate, solitary tract > hypoglossal > gracile > inferior olivary nuclei). Increased density of B2 receptor binding sites was observed in seven medullary nuclei of four hypertensive specimens (paratrigeminal > external cuneate > interpolar and caudal spinal trigeminal, gracile, inferior olivary > hypoglossal nuclei). B2 receptor binding sites were seemingly increased in the same medullary nuclei of two diabetic specimens. Specific binding sites for B1 receptor (1.05 and 1.36 fmol/mg tissue) were seen only in the inferior olivary nucleus in two out of the ten studied specimens. The present results support a putative role for kinins in the regulation of autonomic, nociceptive, and motor functions at the level of the human medulla. Evidence is also provided that B2 receptors are upregulated in medullary cardiovascular centers of subjects afflicted of cardiovascular diseases.Key words: bradykinin, hypertension, diabetes, human brain.


2005 ◽  
Vol 289 (2) ◽  
pp. F431-F441 ◽  
Author(s):  
Maribel Rico ◽  
Amitava Mukherjee ◽  
Martha Konieczkowski ◽  
Leslie A. Bruggeman ◽  
R. Tyler Miller ◽  
...  

Podocyte differentiation is required for normal glomerular filtration barrier function and is regulated by the transcription factor WT1. We identified WT1-interacting protein (WTIP) and hypothesized that it functions as both a scaffold for slit diaphragm proteins and a corepressor of WT1 transcriptional activity by shuttling from cell-cell junctions to the nucleus after injury. Endogenous WTIP colocalizes with zonula occludens-1 (ZO-1) in cultured mouse podocyte adherens junctions. To model podocyte injury in vitro, we incubated differentiated podocytes with puromycin aminonucleoside (PAN; 100 μg/ml) for 24 h, which disassembled cell-cell contacts, rearranged actin cytoskeleton, and caused process retraction. Podocyte synaptopodin expression diminished after PAN treatment, consistent with podocyte dedifferentiation in some human glomerular diseases. To assess podocyte function, we measured albumin flux across differentiated podocytes cultured on collagen-coated Transwell filters. Albumin transit across PAN-treated cells increased to levels observed with undifferentiated podocytes. Consistent with our hypothesis, WTIP, as well as ZO-1, translocated from podocyte adherens junctions to nuclei in PAN-treated cells. Because WTIP is a transcriptional corepressor for WT1, we examined the effect of PAN on expression of retinoblastoma binding protein Rbbp7 (also known as RbAp46), a WT1 target gene expressed in S-shaped bodies during nephrogenesis. Rbbp7 expression in PAN-treated podocytes was reduced compared with untreated cells. In conclusion, WTIP translocates from cell-cell junctions to the nucleus in PAN-treated podocytes. We suggest that WTIP monitors slit diaphragm protein assembly and shuttles into the nucleus after podocyte injury, translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype.


1991 ◽  
Vol 11 (7) ◽  
pp. 3660-3675 ◽  
Author(s):  
Y Luo ◽  
J Amin ◽  
R Voellmy

Purification of ecdysterone receptor from Drosophila melanogaster to apparent homogeneity is reported. Purified receptor binds specifically to several sequences in the promoters of the developmentally active hsp27 and hsp23 heat shock genes that were previously implied in ecdysterone regulation of the genes and that share limited homology among themselves and with mammalian steroid receptor binding sites. Some of these elements confer ecdysterone regulation on a basal promoter in transfected cells, acting in a synergistic fashion. Transcription in vitro of promoters containing such elements is stimulated up to 100-fold by added purified ecdysterone receptor, depending on receptor dosage and the number of elements present. Transcriptional enhancement requires sequence-specific binding of receptor to template promoters which facilitates the formation of a preinitiation complex. Ecdysterone stimulates DNA binding of the receptor in vitro.


Sign in / Sign up

Export Citation Format

Share Document