Unconventional collagens

2000 ◽  
Vol 113 (23) ◽  
pp. 4141-4142
Author(s):  
D.P. Knight

Unconventional Collagens Types VI, VII, VIII, IX, X, XIV, XVI and XIX by S. Ricard-Blum, B. Dublet and M. van der Rest Oxford University Press (2000) pp.155. ISBN 0–19-850545-0 35.00 This thoroughly researched monograph in Oxford University Press's ‘Protein Profile Series’ reviews substantially all the significant literature on this interesting and highly important group of proteins. The authors use the term ‘Unconventional Collagens’ for the collagens of higher vertebrate connective tissues which do not, of themselves, form classical fibrils with a 68 nm banding pattern. The authors chose to omit type IV collagen as this, they claim, would have almost doubled the size of the volume. The monograph represents a very considerable achievement in three respects. Firstly it comprehensively reviews the literature on the sequence, structure, expression, post-translational modification, genetics, physiological function and pathology of each separate unconventional collagen. The thoroughness of this review is indicated by the fact that the bibliography contains no fewer than 1196 references. Secondly, the monograph identifies the modular domain structure for each collagen, clearly demonstrating that these proteins are block co-polymers mainly derived in evolution from a small number of ancestral genes. Thirdly, it starts to identify the way in which the different modules of these sticky molecules interact with each other and with other connective tissue components. This is an important start if we are to understand their vital role in the self-assembly processes which occur in embryology, tissue repair and the major degenerative and collagen gene diseases The clearly written and well set out text is supported by excellent micrographs of rotary shadowed molecules and molecular aggregates and a wealth of diagrams and tables. The book has, in my view, three minor shortcomings: a short summary chapter on type IV would enable the non-specialist reader to relate this collagen to the other non-conventional collagens. Concise summaries at the ends of each chapter would orient newcomers to the field. More significantly, apart from the brief introduction, the book lacks an overall synthesis which pulls together the findings of the separate chapters. These slight limitations aside, this book is essential reading for those engaged in connective tissue research and will do much to stimulate further activity in this area. It will also be of considerable interest to tissue engineers, pathologists and embryologists.

Author(s):  
L. V. Leak ◽  
J. F. Burke

The vital role played by the lymphatic capillaries in the transfer of tissue fluids and particulate materials from the connective tissue area can be demonstrated by the rapid removal of injected vital dyes into the tissue areas. In order to ascertain the mechanisms involved in the transfer of substances from the connective tissue area at the ultrastructural level, we have injected colloidal particles of varying sizes which range from 80 A up to 900-mμ. These colloidal particles (colloidal ferritin 80-100A, thorium dioxide 100-200 A, biological carbon 200-300 and latex spheres 900-mμ) are injected directly into the interstitial spaces of the connective tissue with glass micro-needles mounted in a modified Chambers micromanipulator. The progress of the particles from the interstitial space into the lymphatic capillary lumen is followed by observing tissues from animals (skin of the guinea pig ear) that were injected at various time intervals ranging from 5 minutes up to 6 months.


Author(s):  
C. N. Sun ◽  
H. J. White

Previously, we have reported on extracellular cross-striated banded structures in human connective tissues of a variety of organs (1). Since then, more material has been examined and other techniques applied. Recently, we studied a fibrocytic meningioma of the falx. After the specimen was fixed in 4% buffered glutaraldehyde and post-fixed in 1% buffered osmium tetroxide, other routine procedures were followed for embedding in Epon 812. Sections were stained with uranyl acetate and lead citrate. There were numerous cross striated banded structures in aggregated bundle forms found in the connecfive tissue of the tumor. The banded material has a periodicity of about 450 Å and where it assumes a filamentous arrangement, appears to be about 800 Å in diameter. In comparison with the vicinal native collagen fibrils, the banded material Is sometimes about twice the diameter of native collagen.


2020 ◽  
Vol 25 (43) ◽  
pp. 4560-4569 ◽  
Author(s):  
Yichen Lee ◽  
Bo H. Lee ◽  
William Yip ◽  
Pingchen Chou ◽  
Bak-Sau Yip

Neurofilaments: light, medium, and heavy (abbreviated as NF-L, NF-M, and NF-H, respectively), which belong to Type IV intermediate filament family (IF), are neuron-specific cytoskeletal components. Neurofilaments are axonal structural components and integral components of synapses, which are important for neuronal electric signal transmissions along the axons and post-translational modification. Abnormal assembly of neurofilaments is found in several human neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), infantile spinal muscular atrophy (SMA), and hereditary sensory-motor neuropathy (HSMN). In addition, those pathological neurofilament accumulations are known in α-synuclein in Parkinson’s disease (PD), Aβ and tau in Alzheimer’s disease (AD), polyglutamine in CAG trinucleotide repeat disorders, superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP43), neuronal FUS proteins, optineurin (OPTN), ubiquilin 2 (UBQLN2), and dipeptide repeat protein (DRP) in amyotrophic lateral sclerosis (ALS). When axon damage occurs in central nervous disorders, neurofilament proteins are released and delivered into cerebrospinal fluid (CSF), which are then circulated into blood. New quantitative analyses and assay techniques are well-developed for the detection of neurofilament proteins, particularly NF-L and the phosphorylated NF-H (pNF-H) in CSF and serum. This review discusses the potential of using peripheral blood NF quantities and evaluating the severity of damage in the nervous system. Intermediate filaments could be promising biomarkers for evaluating disease progression in different nervous system disorders.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 178
Author(s):  
Jiann Ruey Ong ◽  
Oluwaseun Adebayo Bamodu ◽  
Nguyen Viet Khang ◽  
Yen-Kuang Lin ◽  
Chi-Tai Yeh ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most diagnosed malignancies and a leading cause of cancer-related mortality globally. This is exacerbated by its highly aggressive phenotype, and limitation in early diagnosis and effective therapies. The SUMO-activating enzyme subunit 1 (SAE1) is a component of a heterodimeric small ubiquitin-related modifier that plays a vital role in SUMOylation, a post-translational modification involving in cellular events such as regulation of transcription, cell cycle and apoptosis. Reported overexpression of SAE1 in glioma in a stage-dependent manner suggests it has a probable role in cancer initiation and progression. In this study, hypothesizing that SAE1 is implicated in HCC metastatic phenotype and poor prognosis, we analyzed the expression of SAE1 in several cancer databases and to unravel the underlying molecular mechanism of SAE1-associated hepatocarcinogenesis. Here, we demonstrated that SAE1 is over-expressed in HCC samples compared to normal liver tissue, and this observed SAE1 overexpression is stage and grade-dependent and associated with poor survival. The receiver operating characteristic analysis of SAE1 in TCGA−LIHC patients (n = 421) showed an AUC of 0.925, indicating an excellent diagnostic value of SAE1 in HCC. Our protein-protein interaction analysis for SAE1 showed that SAE1 interacted with and activated oncogenes such as PLK1, CCNB1, CDK4 and CDK1, while simultaneously inhibiting tumor suppressors including PDK4, KLF9, FOXO1 and ALDH2. Immunohistochemical staining and clinicopathological correlate analysis of SAE1 in our TMU-SHH HCC cohort (n = 54) further validated the overexpression of SAE1 in cancerous liver tissues compared with ‘normal’ paracancerous tissue, and high SAE1 expression was strongly correlated with metastasis and disease progression. The oncogenic effect of upregulated SAE1 is associated with dysregulated cancer metabolic signaling. In conclusion, the present study demonstrates that SAE1 is a targetable cancer metabolic biomarker with high potential diagnostic and prognostic implications for patients with HCC.


2021 ◽  
Vol 22 (5) ◽  
pp. 2704
Author(s):  
Andi Nur Nilamyani ◽  
Firda Nurul Auliah ◽  
Mohammad Ali Moni ◽  
Watshara Shoombuatong ◽  
Md Mehedi Hasan ◽  
...  

Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chaojian Chen ◽  
Manjesh Kumar Singh ◽  
Katrin Wunderlich ◽  
Sean Harvey ◽  
Colette J. Whitfield ◽  
...  

AbstractThe creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies.


1988 ◽  
Vol 263 (35) ◽  
pp. 19112-19118 ◽  
Author(s):  
E C Tsilibary ◽  
G G Koliakos ◽  
A S Charonis ◽  
A M Vogel ◽  
L A Reger ◽  
...  

2021 ◽  
Vol 155 (8) ◽  
pp. 084902
Author(s):  
Iva Manasi ◽  
Mohammad R. Andalibi ◽  
Ria S. Atri ◽  
Jake Hooton ◽  
Stephen M. King ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Olivier M. Vanakker ◽  
Dimitri Hemelsoet ◽  
Anne De Paepe

Though the genetic background of ischaemic and haemorrhagic stroke is often polygenetic or multifactorial, it can in some cases result from a monogenic disease, particularly in young adults. Besides arteriopathies and metabolic disorders, several connective tissue diseases can present with stroke. While some of these diseases have been recognized for decades as causes of stroke, such as the vascular Ehlers-Danlos syndrome, others only recently came to attention as being involved in stroke pathogenesis, such as those related to Type IV collagen. This paper discusses each of these connective tissue disorders and their relation with stroke briefly, emphasizing the main clinical features which can lead to their diagnosis.


2008 ◽  
Vol 19 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Ana Teresa Sant'anna ◽  
Luis Carlos Spolidório ◽  
Lizeti Toledo Oliveira Ramalho

This study performed a histological analysis of the effect of formocresol associated to endotoxin (LPS) in the subcutaneous connective tissue of mice. Ninety mice were randomly assigned to 3 groups (n=30). Each animal received one plastic tube implant containing endotoxin solution (10 mg/mL), formocresol (original formula) or a mixture of endotoxin and formocresol. The endotoxin and formocresol groups served as controls. The periods of analysis were 7, 15 and 30 days. At each experimental period, tissue samples were collected and submitted to routine processing for histological analysis. Endotoxin and formocresol produced necrosis and chronic inflammation at 7 and 15 days. At 30 days, the endotoxin group showed no necrosis, while in the formocresol group necrosis persisted. The formocresol-endotoxin association produced necrosis and chronic inflammation in the same way as observed with formocresol at all experimental periods. In conclusion, formocresol seems not to be able to inactive the toxic effects of endotoxin in connective tissues.


Sign in / Sign up

Export Citation Format

Share Document