The Saccharomyces cerevisiae cyclin Clb2p is targeted to multiple subcellular locations by cis- and trans-acting determinants

2001 ◽  
Vol 114 (3) ◽  
pp. 589-597 ◽  
Author(s):  
J.K. Hood ◽  
W.W. Hwang ◽  
P.A. Silver

The cyclin-dependent kinase Cdc28p associates with the cyclin Clb2p to induce mitosis in the yeast Saccharomyces cerevisiae. Several cell cycle regulatory proteins have been shown to require specific nuclear transport events to exert their regulatory functions. Therefore, we investigated the subcellular localization of wild-type Clb2p and several mutant versions of the protein using green fluorescent protein (GFP) fusion constructs. Wild-type Clb2p is primarily nuclear at all points of the cell. A point mutation in a potential leucine-rich nuclear export signal (NES) enhances the nuclear localization of the protein, and delta-yrb2 cells exhibit an apparent Clb2p nuclear export defect. Clb2p contains a bipartite nuclear localization signal (NLS), and its nuclear localization requires the alpha and beta importins (Srp1p and Kap95p), as well as the yeast Ran GTPase and its regulators. Deletion of the Clb2p NLS causes increased cytoplasmic localization of the protein, as well as accumulation at the bud neck. These data indicate that Clb2p exists in multiple places in the yeast cell, possibly allowing Cdc28p to locally phosphorylate substrates at distinct subcellular sites.

1998 ◽  
Vol 18 (11) ◽  
pp. 6805-6815 ◽  
Author(s):  
Jens Solsbacher ◽  
Patrick Maurer ◽  
F. Ralf Bischoff ◽  
Gabriel Schlenstedt

ABSTRACT Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin α binds to the NLS and to importin β, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin β. The importin subunits are exported separately. We investigated the role of Cse1p, theSaccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin α). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin β accumulated in nuclei ofcse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.


2003 ◽  
Vol 14 (6) ◽  
pp. 2492-2507 ◽  
Author(s):  
Kristina B. Mercer ◽  
Denise B. Flaherty ◽  
Rachel K. Miller ◽  
Hiroshi Qadota ◽  
Tina L. Tinley ◽  
...  

To further understand the assembly and maintenance of the muscle contractile apparatus, we have identified a new protein, UNC-98, in the muscle of Caenorhabditis elegans. unc-98 mutants display reduced motility and a characteristic defect in muscle structure. We show that the major defect in the mutant muscle is in the M-lines and dense bodies (Z-line analogs). Both functionally and compositionally, nematode M-lines and dense bodies are analogous to focal adhesions of nonmuscle cells. UNC-98 is a novel 310-residue polypeptide consisting of four C2H2 Zn fingers and several possible nuclear localization signal and nuclear export signal sequences. By use of UNC-98 antibodies and green fluorescent protein fusions (to full-length UNC-98 and UNC-98 fragments), we have shown that UNC-98 resides at M-lines, muscle cell nuclei, and possibly at dense bodies. Furthermore, we demonstrated that 1) the N-terminal 106 amino acids are both necessary and sufficient for nuclear localization, and 2) the C-terminal (fourth) Zn finger is required for localization to M-lines and dense bodies. UNC-98 interacts with UNC-97, a C. elegans homolog of PINCH. We propose that UNC-98 is both a structural component of muscle focal adhesions and a nuclear protein that influences gene expression.


1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


2008 ◽  
Vol 83 (6) ◽  
pp. 2531-2539 ◽  
Author(s):  
Xiaojuan Li ◽  
Fanxiu Zhu

ABSTRACT Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus 8 (KSHV) is an immediate-early phosphorylated tegument protein and has been shown to play important roles at both early and late stages of viral infection. Homologues of ORF45 exist only in gammaherpesviruses, and their homology is limited. These homologues differ in their protein lengths and subcellular localizations. We and others have reported that KSHV ORF45 is localized predominantly in the cytoplasm, whereas its homologue in murine herpesvirus 68 is localized exclusively in the nucleus. We observed that ORF45s of rhesus rhadinovirus and herpesvirus saimiri are found exclusively in the nucleus. As a first step toward understanding the mechanism underlying the distinct intracellular distribution of KSHV ORF45, we identified the signals that control its subcellular localization. We found that KSHV ORF45 accumulated rapidly in the nucleus in the presence of leptomycin B, an inhibitor of CRM1 (exportin 1)-dependent nuclear export, suggesting that it could shuttle between the nucleus and cytoplasm. Mutational analysis revealed that KSHV ORF45 contains a CRM1-dependent, leucine-rich-like nuclear export signal and an adjacent nuclear localization signal. Replacement of the key residues with alanines in these motifs of ORF45 disrupts its shuttling between the cytoplasm and nucleus. The resulting ORF45 mutants have restricted subcellular localizations, being found exclusively either in the cytoplasm or in the nucleus. Recombinant viruses were reconstituted by introduction of these mutations into KSHV bacterial artificial chromosome BAC36. The resultant viruses have distinct phenotypes. A mutant virus in which ORF45 is restricted to the cytoplasm behaves as an ORF45-null mutant and produces 5- to 10-fold fewer progeny viruses than the wild type. In contrast, mutants in which the ORF45 protein is mostly restricted to the nucleus produce numbers of progeny viruses similar to those produced by the wild type. These data suggest that the subcellular localization signals of ORF45 have important functional roles in KSHV lytic replication.


2003 ◽  
Vol 371 (2) ◽  
pp. 533-540 ◽  
Author(s):  
Shary N. SHELTON ◽  
Barbara BARYLKO ◽  
Derk D. BINNS ◽  
Bruce F. HORAZDOVSKY ◽  
Joseph P. ALBANESI ◽  
...  

The yeast Saccharomyces cerevisiae contains two known phosphoinositide 4-kinases (PI 4-kinases), which are encoded by PIK1 and STT4; both are essential. Pik1p is important for exocytic transport from the Golgi, whereas Stt4p plays a role in cell-wall integrity and cytoskeletal rearrangements. In the present study, we report that cells have a third PI 4-kinase activity encoded by LSB6, a protein identified previously in a two-hybrid screen as interacting with LAS17p. Although Pik1p and Stt4p are closely related members of the Type III class of PI 4-kinases, Lsb6p belongs to the distinct Type II class, based on its amino acid sequence, its sensitivity to inhibition by adenosine and its insensitivity to wortmannin. Lsb6p is the first fungal Type II enzyme cloned. The protein was expressed and purified from Sf9 cells and used to define kinetic parameters. As commonly observed for surface-active enzymes, activities varied both with substrate concentration and lipid/detergent molar ratios. Maximal activities of approx. 100min−1 were obtained at the PI/Triton X-100 ratio of 1:5. The Km value for ATP was 266μM, intermediate between the values reported for mammalian Type II and III kinases. Epitope-tagged protein, expressed in yeast, was entirely particulate, and about half of it could be extracted with non-ionic detergent. Lsb6p–green fluorescent protein was found both on vacuolar membranes and on the plasma membrane, suggesting a role in endocytic or exocytic pathways.


2005 ◽  
Vol 288 (2) ◽  
pp. R539-R546 ◽  
Author(s):  
Mikhiela Sherrod ◽  
Xuebo Liu ◽  
Xiaoji Zhang ◽  
Curt D. Sigmund

In the brain, angiotensinogen (AGT) is primarily expressed in astrocytes; brain ANG II derived from locally produced AGT has been shown to influence blood pressure. To better understand the molecular basis of AGT expression in the brain, we identified a human astrocytoma cell line, CCF-STTG1, that expresses endogenous AGT mRNA and produces AGT protein. Studies examining CCF-STTG1 cell AGT after N- and O-glycosidase suggest that AGT may not be posttranslationally modified by glycosylation in these cells as it is in plasma. Small amounts of AGT (5% of HepG2) were detected in the culture medium, suggesting a low rate of AGT secretion. Immunocytochemical examination of AGT in CCF-STTG1 cells revealed mainly nuclear localization. Although this has not been previously reported, it is consistent with nuclear localization of other serpin family members. To examine this further, we generated a fusion protein consisting of green fluorescent protein (GFP) and human AGT and examined subcellular localization by confocal microscopy after confirming expression of the fusion protein by Western blot. In CCF-STTG1 cells, a control GFP construct lacking AGT was mainly localized in the cytoplasm, whereas the GFP-AGT fusion protein was primarily localized in the nucleus. To map the location of a potential nuclear localization signal, overlapping 500-bp fragments of human AGT cDNA were fused in frame downstream of GFP. Although four of the fusion proteins exhibited either perinuclear or cytoplasmic localization, one fusion protein encoding the COOH terminus of AGT was localized in the nucleus. Importantly, nuclear localization of human AGT was confirmed in primary cultures of glial cells isolated from transgenic mice expressing the human AGT under the control of its own endogenous promoter. Our results suggest that AGT may have a novel intracellular role in the brain apart from its predicted endocrine function.


1999 ◽  
Vol 354 (1389) ◽  
pp. 1601-1609 ◽  
Author(s):  
R. T. Hay ◽  
L. Vuillard ◽  
J. M. P. Desterro ◽  
M. S. Rodriguez

In unstimulated cells the transcription factor NF–κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Ultimately activation of NF–κB is achieved by ubiquitination and proteasome–mediated degradation of IκBα and we have therefore investigated factors which control this proteolysis. Signal–induced degradation of IκBα exposes the nuclear localization signal of NF–κB, thus allowing it to translocate into the nucleus and activate transcription from responsive genes. An autoregulatory loop is established when NF–κB induces expression of the IκBα gene and newly synthesized IκBα accumulates in the nucleus where it negatively regulates NF–κB–dependent transcription. As part of this post–induction repression, the nuclear export signal on IκBα mediates transport of NF–κB–IκBα complexes from the nucleus to the cytoplasm. As nuclear export of IκBα is blocked by leptomycin B this drug was used to examine the effect of cellular location on susceptibility of IκBα to signal–induced degradation. In the presence of leptomycin B, IκBα is accumulated in the nucleus and in this compartment is resistant to signal–induced degradation. Thus signal–induced degradation of IκBα is mainly, if not exclusively a cytoplasmic process. An efficient nuclear export of IκBα is therefore essential for maintaining a low level of IκBα in the nucleus and allowing NF–κB to be transcriptionally active upon cell stimulation. We have detected a modified form of IκBα, conjugated to the small ubiquitin–like protein SUMO–1, which is resistant to signal–induced degradation. SUMO–1 modified IκBα remains associated with NF–κB and thus overexpression of SUMO–1 inhibits the signal–induced activation of NF–κB–dependent transcription. Reconstitution of the conjugation reaction with highly purified proteins demonstrated that in the presence of a novel E1 SUMO–1 activating enzyme, Ubch9 directly conjugated SUMO–1 to IκBα on residues K21 and K22, which are also used for ubiquitin modification. Thus, while ubiquitination targets proteins for rapid degradation, SUMO–1 modification acts antagonistically to generate proteins resistant to degradation.


2002 ◽  
Vol 361 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Hiromi HANAKA ◽  
Takao SHIMIZU ◽  
Takashi IZUMI

5-Lipoxygenase (5-LO) metabolizes arachidonic acid to leukotriene A4, a key intermediate in leukotriene biosynthesis. To explore the molecular mechanisms of its cell-specific localization, a fusion protein between green fluorescent protein (GFP) and human 5-LO (GFP—5LO) was expressed in various cells. GFP—5LO was localized in the cytosol in HL-60 cells and in both the nucleus and the cytosol in RBL (rat basophilic leukaemia) cells, similarly to the native enzyme in these cells. The localization of GFP fusion proteins for mutant 5-LOs in a putative bipartite nuclear localization signal (NLS), amino acids 638–655, in Chinese hamster ovary (CHO)-K1 and Swiss3T3 cells revealed that this motif is important for the nuclear localization of 5-LO. A GFP fusion protein of this short peptide localized consistently in the nucleus. Leptomycin B, a specific inhibitor of nuclear export signal (NES)-dependent transport, diminished the cytosolic localization of 5-LO in HL-60 cells and that of GFP—5LO in CHO-K1 cells, suggesting that an NES-system might also function in determining 5-LO localization. Analysis of the localization of 5-LO during the cell cycle points to a controlled movement of this enzyme. Thus we conclude that a balance of NLS- and NES-dependent mechanisms determines the cell-type-specific localization of 5-LO, suggesting a nuclear function for this enzyme.


2004 ◽  
Vol 85 (5) ◽  
pp. 1329-1333 ◽  
Author(s):  
Eugene V. Ryabov ◽  
Sang Hyon Kim ◽  
Michael Taliansky

The 27 kDa protein encoded by ORF3 of Groundnut rosette virus (GRV) is required for viral RNA protection and movement of viral RNA through the phloem. Localization studies have revealed that this protein is located in nuclei, preferentially targeting nucleoli. We have demonstrated that amino acids (aa) 108–122 of the GRV ORF3 protein contain an arginine-rich nuclear localization signal. Arginine-to-asparagine substitutions in this region decreased the level of the ORF3 protein accumulation in nuclei. A leucine-rich nuclear export signal (NES) was located at aa 148–156 of the GRV ORF3 protein. Leucine-to-alanine substitutions in this region resulted in a dramatic increase in GRV ORF3 protein accumulation in both nuclei and nucleoli. Consistent with this, we also showed that the previously identified NES of BR1 protein of Squash leaf curl virus can functionally replace the leucine-rich region of GRV ORF3 in nuclear export.


Sign in / Sign up

Export Citation Format

Share Document