Use of abnormal preprophase bands to decipher division plane determination

2001 ◽  
Vol 114 (3) ◽  
pp. 599-607 ◽  
Author(s):  
C. Granger ◽  
R. Cyr

Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.

2006 ◽  
Vol 17 (7) ◽  
pp. 3009-3020 ◽  
Author(s):  
Johan-Owen De Craene ◽  
Jeff Coleman ◽  
Paula Estrada de Martin ◽  
Marc Pypaert ◽  
Scott Anderson ◽  
...  

The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.


2015 ◽  
Vol 105 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Chenlei Hua ◽  
Kiki Kots ◽  
Tijs Ketelaar ◽  
Francine Govers ◽  
Harold J. G. Meijer

Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.


2001 ◽  
Vol 360 (3) ◽  
pp. 645-649 ◽  
Author(s):  
Renu K. JAIN ◽  
Paul B. M. JOYCE ◽  
Miguel MOLINETE ◽  
Philippe A. HALBAN ◽  
Sven-Ulrik GORR

Green fluorescent protein (GFP) is used extensively as a reporter protein to monitor cellular processes, including intracellular protein trafficking and secretion. In general, this approach depends on GFP acting as a passive reporter protein. However, it was recently noted that GFP oligomerizes in the secretory pathway of endocrine cells. To characterize this oligomerization and its potential role in GFP transport, cytosolic and secretory forms of enhanced GFP (EGFP) were expressed in GH4C1 and AtT-20 endocrine cells. Biochemical analysis showed that cytosolic EGFP existed as a 27kDa monomer, whereas secretory forms of EGFP formed disulphide-linked oligomers. EGFP contains two cysteine residues (Cys49 and Cys71), which could play a role in this oligomerization. Site-directed mutagenesis of Cys49 and Cys71 showed that both cysteine residues were involved in disulphide interactions. Substitution of either cysteine residue resulted in a reduction or loss of oligomers, although dimers of the secretory form of EGFP remained. Mutation of these residues did not adversely affect the fluorescence of EGFP. EGFP oligomers were stored in secretory granules and secreted by the regulated secretory pathway in endocrine AtT-20 cells. Similarly, the dimeric mutant forms of EGFP were still secreted via the regulated secretory pathway, indicating that the higher-order oligomers were not necessary for sorting in AtT-20 cells. These results suggest that the oligomerization of EGFP must be considered when the protein is used as a reporter molecule in the secretory pathway.


2001 ◽  
Vol 12 (12) ◽  
pp. 4013-4029 ◽  
Author(s):  
Marie-Neige Cordonnier ◽  
Daniel Dauzonne ◽  
Daniel Louvard ◽  
Evelyne Coudrier

An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors.


2004 ◽  
Vol 70 (12) ◽  
pp. 7530-7538 ◽  
Author(s):  
Christopher J. Reuter ◽  
Julie A. Maupin-Furlow

ABSTRACT Proteasomes are energy-dependent proteases that are central to the quality control and regulated turnover of proteins in eukaryotic cells. Dissection of this proteolytic pathway in archaea, however, has been hampered by the lack of substrates that are easily detected in whole cells. In the present study, we developed a convenient reporter system by functional expression of a green fluorescent protein variant with C-terminal fusions in the haloarchaeon Haloferax volcanii. The levels of this reporter protein correlated with whole-cell fluorescence that was readily detected in culture. Accumulation of the reporter protein was dependent on the sequence of the C-terminal amino acid fusion, as well as the presence of an irreversible, proteasome-specific inhibitor (clasto-lactacystin β-lactone). This inhibitor was highly specific for H. volcanii 20S proteasomes, with a Ki of ∼40 nM. In contrast, phenylmethanesulfonyl fluoride did not influence the levels of fluorescent reporter protein or inhibit 20S proteasomes. Together, these findings provide a powerful tool for the elucidation of protein substrate recognition motifs and the identification of new genes which may be involved in the proteasome pathway of archaea.


1997 ◽  
Vol 138 (3) ◽  
pp. 629-641 ◽  
Author(s):  
Janet L. Carminati ◽  
Tim Stearns

Proper orientation of the mitotic spindle is critical for successful cell division in budding yeast. To investigate the mechanism of spindle orientation, we used a green fluorescent protein (GFP)–tubulin fusion protein to observe microtubules in living yeast cells. GFP–tubulin is incorporated into microtubules, allowing visualization of both cytoplasmic and spindle microtubules, and does not interfere with normal microtubule function. Microtubules in yeast cells exhibit dynamic instability, although they grow and shrink more slowly than microtubules in animal cells. The dynamic properties of yeast microtubules are modulated during the cell cycle. The behavior of cytoplasmic microtubules revealed distinct interactions with the cell cortex that result in associated spindle movement and orientation. Dynein-mutant cells had defects in these cortical interactions, resulting in misoriented spindles. In addition, microtubule dynamics were altered in the absence of dynein. These results indicate that microtubules and dynein interact to produce dynamic cortical interactions, and that these interactions result in the force driving spindle orientation.


2009 ◽  
Vol 20 (1) ◽  
pp. 438-451 ◽  
Author(s):  
Susana B. Salvarezza ◽  
Sylvie Deborde ◽  
Ryan Schreiner ◽  
Fabien Campagne ◽  
Michael M. Kessels ◽  
...  

The functions of the actin cytoskeleton in post-Golgi trafficking are still poorly understood. Here, we report the role of LIM Kinase 1 (LIMK1) and its substrate cofilin in the trafficking of apical and basolateral proteins in Madin-Darby canine kidney cells. Our data indicate that LIMK1 and cofilin organize a specialized population of actin filaments at the Golgi complex that is selectively required for the emergence of an apical cargo route to the plasma membrane (PM). Quantitative pulse-chase live imaging experiments showed that overexpression of kinase-dead LIMK1 (LIMK1-KD), or of LIMK1 small interfering RNA, or of an activated cofilin mutant (cofilin S3A), selectively slowed down the exit from the trans-Golgi network (TGN) of the apical PM marker p75-green fluorescent protein (GFP) but did not interfere with the apical PM marker glycosyl phosphatidylinositol-YFP or the basolateral PM marker neural cell adhesion molecule-GFP. High-resolution live imaging experiments of carrier formation and release by the TGN and analysis of peri-Golgi actin dynamics using photoactivatable GFP suggest a scenario in which TGN-localized LIMK1-cofilin regulate a population of actin filaments required for dynamin-syndapin-cortactin–dependent generation and/or fission of precursors to p75 transporters.


2019 ◽  
pp. 525-530
Author(s):  
N. Lipták ◽  
Z. Bősze ◽  
L. Hiripi

Green Fluorescent protein (GFP) transgenic animals are accepted tools for studying various physiological processes, including organ development and cell migration. However, several in vivo studies claimed that GFP may impair transgenic animals’ health. Glomerulosclerosis was observed in transgenic mice and rabbits with ubiquitous reporter protein expression. Heart-specific GFP expression evoked dilated cardiomyopathy and altered cardiac function in transgenic mouse and zebrafish lines, respectively. Moreover, growth retardation and increased axon swelling were observed in GFP and yellow fluorescent protein (YFP) transgenic mice, respectively. This review will focus on the potential drawbacks of the applications of GFP transgenic animals in biomedical research.


Sign in / Sign up

Export Citation Format

Share Document