Characterization of temperature-sensitive mutations in the yeast syntaxin 1 homologues Sso1p and Sso2p, and evidence of a distinct function for Sso1p in sporulation

2002 ◽  
Vol 115 (2) ◽  
pp. 409-420 ◽  
Author(s):  
Jussi Jäntti ◽  
Markku K. Aalto ◽  
Mattias Öyen ◽  
Lena Sundqvist ◽  
Sirkka Keränen ◽  
...  

The duplicated genes SSO1 and SSO2 encode yeast homologues of syntaxin 1 and perform an essential function during fusion of secretory vesicles at the plasma membrane. We have used in vitro mutagenesis to obtain a temperature-sensitive SSO2 allele, sso2-1, in which a conserved arginine has been changed to a lysine. A yeast strain that lacks SSO1 and carries the sso2-1 allele ceases growth and accumulates secretory vesicles at the restrictive temperature. Interestingly, the strain also has a pronounced phenotype at the permissive temperature, causing a defect in bud neck closure that prevents separation of mother and daughter cells. The same mutation was introduced into SSO1, producing the sso1-1 allele, which also has a temperature-sensitive phenotype, although less pronounced than sso2-1. A screen for high copy number suppressors of sso2-1 yielded three genes that are involved in the terminal step of secretion: SNC1, SNC2 and SEC9. The sso1-1 mutation interacts synthetically with a disruption of the MSO1 gene, which encodes a Sec1p interacting protein. Interestingly, we further found that both MSO1 and SSO1, but not SSO2, are required for sporulation. This difference is not due to differential expression, since SSO2 expressed from the SSO1 promoter failed to restore sporulation. We conclude that a functional difference exists between the Sso1 and Sso2 proteins, with the former being specifically required during sporulation.

1985 ◽  
Vol 5 (4) ◽  
pp. 902-905
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


2007 ◽  
Vol 81 (6) ◽  
pp. 2849-2860 ◽  
Author(s):  
Giuseppe Balistreri ◽  
Javier Caldentey ◽  
Leevi Kääriäinen ◽  
Tero Ahola

ABSTRACT We have analyzed the biochemical consequences of mutations that affect viral RNA synthesis in Semliki Forest virus temperature-sensitive (ts) mutants. Of the six mutations mapping in the multifunctional replicase protein nsP2, three were located in the N-terminal helicase region and three were in the C-terminal protease domain. Wild-type and mutant nsP2s were expressed, purified, and assayed for nucleotide triphosphatase (NTPase), RNA triphosphatase (RTPase), and protease activities in vitro at 24°C and 35°C. The protease domain mutants (ts4, ts6, and ts11) had reduced protease activity at 35°C but displayed normal NTPase and RTPase. The helicase domain mutation ts1 did not have enzymatic consequences, whereas ts13a and ts9 reduced both NTPase and protease activities but in different and mutant-specific ways. The effects of these helicase domain mutants on protease function suggest interdomain interactions within nsP2. NTPase activity was not directly required for protease activity. The similarities of the NTPase and RTPase results, as well as competition experiments, suggest that these two reactions utilize the same active site. The mutations were also studied in recombinant viruses first cultivated at the permissive temperature and then shifted up to the restrictive temperature. Processing of the nonstructural polyprotein was generally retarded in cells infected with viruses carrying the ts4, ts6, ts11, and ts13a mutations, and a specific defect appeared in ts9. All mutations except ts13a were associated with a large reduction in the production of the subgenomic 26S mRNA, indicating that both protease and helicase domains influence the recognition of the subgenomic promoter during virus replication.


1991 ◽  
Vol 113 (6) ◽  
pp. 1313-1330 ◽  
Author(s):  
R J Duronio ◽  
D A Rudnick ◽  
R L Johnson ◽  
D R Johnson ◽  
J I Gordon

The S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase gene (NMT1) is essential for vegetative growth. NMT1 was found to be allelic with a previously described, but unmapped and unidentified mutation that causes myristic acid (C14:0) auxotrophy. The mutant (nmt1-181) is temperature sensitive, but growth at the restrictive temperature (36 degrees C) is rescued with exogenous C14:0. Several analogues of myristate with single oxygen or sulfur for methylene group substitutions partially complement the phenotype, while others inhibit growth even at the permissive temperature (24 degrees C). Cerulenin, a fatty acid synthetase inhibitor, also prevents growth of the mutant at 24 degrees C. Complementation of growth at 36 degrees C by exogenous fatty acids is blocked by a mutation affecting the acyl:CoA synthetase gene. The nmt1-181 allele contains a single missense mutation of the 455 residue acyltransferase that results in a Gly451----Asp substitution. Analyses of several intragenic suppressors suggest that Gly451 is critically involved in NMT catalysis. In vitro kinetic studies with purified mutant enzyme revealed a 10-fold increase in the apparent Km for myristoyl-CoA at 36 degrees C, relative to wild-type, that contributes to an observed 200-fold reduction in catalytic efficiency. Together, the data indicate that nmt-181 represents a sensitive reporter of the myristoyl-CoA pools utilized by NMT.


1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


1985 ◽  
Vol 5 (4) ◽  
pp. 902-905 ◽  
Author(s):  
M Narkhammar ◽  
R Hand

ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 173-187
Author(s):  
David P. Cross ◽  
James H. Sang

Results are reported from the culturing in vitro of cells from individual early gastrulae of the following four groups of X-linked embryonic lethal mutants of Drosophila melanogaster. (1) Notch lethals. Five Notch mutants were studied which have been reported to give similar abnormalities in whole embryos: the nervous system displays a three-fold hypertrophy as part of a shift in the pattern of differentiation within ectodermal derivatives, and mesodermal derivatives do not differentiate. An hypertrophy of nerve was found in cell cultures prepared from embryos of all five mutants. In addition, four of the five alleles consistently gave abnormalities of muscle differentiation: when compared to controls, Notch cultures had a reduced frequency of myotubes, and displayed unusual clusters of myocytes which had either failed to fuse or had fused incompletely. Results from mixed cultures prepared from two embryos were consistent with the autonomous expression of nerve and muscle abnormalities by Notch-8 cells in the presence of wild-type cells. It is argued that the Notch locus has a direct role in the differentiation of both nerve and muscle. (2) white deficiencies. Cells carrying either of two deficiencies gave a clear-cut pattern of abnormalities: initial cellular differentiations were normal, but nerve, muscle and fat-body cells progressively deteriorated during the culture period. Mixed cultures showed that wild-type cells could not ‘rescue’ mutant muscle and fat-body cells; however, the status of the autonomy of mutant nerve abnormalities in these cultures was unclear. Both white deficiencies remove cytological band 3C1, and this permits a comparison of results with those from cultures of cells from Notch-8 embryos (also deficient for 3C1). Abnormalities displayed in cultures of the two types of mutant show no overlap. Therefore no consistent cellular abnormality can be attributed to absence of band 3C1. (3) lethal{l)myospheroid. In contrast to earlier observations on in vitro cell cultures (Donady & Seecof, 1972) muscle was seen to differentiate, though its morphology was extremely abnormal. Observations indicated that all cell types within the cultures had poor properties of adhesion to a glass substrate. It is argued that the observed abnormalities are not consistent with a mutant lesion which is restricted to the basement membrane (contra Wright, 1960), and that all cell types carry a basic defect which may reside in the cell membrane. (4) shibirets alleles. Cultures of two temperature-sensitive lethal shibire alleles (shits1, shits3) were normal at the permissive temperature of 22 °C. At the restrictive temperature (29 °C) early cell differentiation was normal but subsequent development was blocked. This blockage could be partially reversed by shifting cultures to the permissive temperature after as much as 10 days exposure to the high temperature. It is suggested that shits cells are mutant in a process which is basic to several cell types.


2003 ◽  
Vol 163 (3) ◽  
pp. 457-461 ◽  
Author(s):  
Brett A. Kaufman ◽  
Jill E. Kolesar ◽  
Philip S. Perlman ◽  
Ronald A. Butow

The yeast mitochondrial chaperonin Hsp60 has previously been implicated in mitochondrial DNA (mtDNA) transactions: it is found in mtDNA nucleoids associated with single-stranded DNA; it binds preferentially to the template strand of active mtDNA ori sequences in vitro; and wild-type (ρ+) mtDNA is unstable in hsp60 temperature-sensitive (ts) mutants grown at the permissive temperature. Here we show that the mtDNA instability is caused by a defect in mtDNA transmission to daughter cells. Using high resolution, fluorescence deconvolution microscopy, we observe a striking alteration in the morphology of mtDNA nucleoids in ρ+ cells of an hsp60-ts mutant that suggests a defect in nucleoid division. We show that ρ− petite mtDNA consisting of active ori repeats is uniquely unstable in the hsp60-ts mutant. This instability of ori ρ− mtDNA requires transcription from the canonical promoter within the ori element. Our data suggest that the nucleoid dynamics underlying mtDNA transmission are regulated by the interaction between Hsp60 and mtDNA ori sequences.


1973 ◽  
Vol 51 (12) ◽  
pp. 1588-1597 ◽  
Author(s):  
David T. Denhardt ◽  
Makoto Iwaya ◽  
Grant McFadden ◽  
Gerald Schochetman

Evidence is presented that in Escherichia coli made permeable to nucleotides by exposure to toluene, the synthesis of a DNA chain complementary to the infecting single-stranded DNA of bacteriophage [Formula: see text] requires ATP as well as the four deoxyribonucleoside triphosphates. This synthesis results in the formation of the parental double-stranded replicative-form (RF) molecule. The ATP is not required simply to prevent degradation of the ribonucleoside or deoxyribonucleoside triphosphates; it can be partially substituted for by other ribonucleoside triphosphates.No single one of the known E. coli DNA polymerases appears to be uniquely responsible in vivo for the formation of the parental RF. Since [Formula: see text] replicates well in strains lacking all, or almost all, of the in-vitro activities of DNA polymerases I and II, neither of these two enzymes would seem essential; and in a temperature-sensitive E. coli mutant (dnaEts) deficient in DNA polmerase-I activity and possessing a temperature-sensitive DNA polymerase III, the viral single-stranded DNA is efficiently incorporated into an RF molecule at the restrictive temperature. In contrast, both RF replication and progeny single-stranded DNA synthesis are dependent upon DNA polymerase III activity.


1986 ◽  
Vol 6 (12) ◽  
pp. 4594-4601
Author(s):  
J J Dermody ◽  
B E Wojcik ◽  
H Du ◽  
H L Ozer

We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 989-1005 ◽  
Author(s):  
Keiko Umezu ◽  
Neal Sugawara ◽  
Clark Chen ◽  
James E Haber ◽  
Richard D Kolodner

Abstract Replication protein A (RPA) is a single-stranded DNA-binding protein identified as an essential factor for SV40 DNA replication in vitro. To understand the in vivo functions of RPA, we mutagenized the Saccharomyces cerevisiae RFA1 gene and identified 19 ultraviolet light (UV) irradiation- and methyl methane sulfonate (MMS)-sensitive mutants and 5 temperature-sensitive mutants. The UV- and MMS-sensitive mutants showed up to 104 to 105 times increased sensitivity to these agents. Some of the UV- and MMS-sensitive mutants were killed by an HO-induced double-strand break at MAT. Physical analysis of recombination in one UV- and MMS-sensitive rfa1 mutant demonstrated that it was defective for mating type switching and single-strand annealing recombination. Two temperature-sensitive mutants were characterized in detail, and at the restrictive temperature were found to have an arrest phenotype and DNA content indicative of incomplete DNA replication. DNA sequence analysis indicated that most of the mutations altered amino acids that were conserved between yeast, human, and Xenopus RPA1. Taken together, we conclude that RPA1 has multiple roles in vivo and functions in DNA replication, repair, and recombination, like the single-stranded DNA-binding proteins of bacteria and phages.


Sign in / Sign up

Export Citation Format

Share Document