scholarly journals Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle

2002 ◽  
Vol 115 (4) ◽  
pp. 817-826 ◽  
Author(s):  
Irina Majoul ◽  
Tobias Schmidt ◽  
Maria Pomasanova ◽  
Evgenia Boutkevich ◽  
Yuri Kozlov ◽  
...  

Cholera and Shiga toxin bind to the cell surface via glycolipid receptors GM1 and Gb3, respectively. Surprisingly, the majority of Vero cells from a non-synchronized population bind either Cholera or Shiga toxin but not both toxins. The hypothesis that the differential expression of toxin receptors is regulated by the cell cycle was tested. We find that Cholera toxin binds preferentially in G0/G1, with little binding through S-phase to telophase,whereas Shiga toxin binds maximally through G2 to telophase but does not bind during G0/G1 and S-phase. The changes result from the corresponding changes in Gb3 and GM1 synthesis, not from variations of receptor transport to the cell surface. The changes do not reflect competition of Gb3 and GM1 synthesis for lactosylceramide. Cells as diverse as Vero cells, PC12 cells and astrocytes show the same cell-cycle-dependent regulation of glycosphingolipid receptors,suggesting that this novel phenomenon is based on a conserved regulatory mechanism.

2002 ◽  
Vol 157 (7) ◽  
pp. 1113-1123 ◽  
Author(s):  
Brian P. Chadwick ◽  
Huntington F. Willard

One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.


1985 ◽  
Vol 225 (2) ◽  
pp. 529-533 ◽  
Author(s):  
A J Strain ◽  
W A H Wallace ◽  
A H Wyllie

Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.


1991 ◽  
Vol 11 (4) ◽  
pp. 2133-2148
Author(s):  
A Sutton ◽  
D Immanuel ◽  
K T Arndt

Saccharomyces cerevisiae strains containing temperature-sensitive mutations in the SIT4 protein phosphatase arrest in late G1 at the nonpermissive temperature. Order-of-function analysis shows that SIT4 is required in late G1 for progression into S phase. While the levels of SIT4 do not change in the cell cycle, SIT4 associates with two high-molecular-weight phosphoproteins in a cell-cycle-dependent fashion. In addition, we have identified a polymorphic gene, SSD1, that in some versions can suppress the lethality due to a deletion of SIT4 and can also partially suppress the phenotypic defects due to a null mutation in BCY1. The SSD1 protein is implicated in G1 control and has a region of similarity to the dis3 protein of Schizosaccharomyces pombe. We have also identified a gene, PPH2alpha, that in high copy number can partially suppress the growth defect of sit4 strains. The PPH2 alpha gene encodes a predicted protein that is 80% identical to the catalytic domain of mammalian type 2A protein phosphatases but also has an acidic amino-terminal extension not present in other phosphatases.


1981 ◽  
Vol 88 (1) ◽  
pp. 241-244 ◽  
Author(s):  
N Shimizu ◽  
Y Shimizu ◽  
B B Fuller

Binding of 125I-labeled insulin to the surface receptors of Cloudman S-91 mouse melanoma cells (CCL 53.1) was studied at various phases (M, G1, S, and G2) in the cell cycle. Insulin-binding activity was persistently present during the cell cycle but the highest activity was noted at the S-phase. The insulin once bound to the cell surface receptors at any phase of the cell cycle was internalized and degraded, presumably through a lysosomal pathway. Insulin-indexing activity of melanoma cells was not affected by melanocyte-stimulating hormone.


1994 ◽  
Vol 304 (1) ◽  
pp. 105-111 ◽  
Author(s):  
G Werner-Felmayer ◽  
G Golderer ◽  
E R Werner ◽  
P Gröbner ◽  
H Wachter

Physarum polycephalum, an acellular slime mould, serves as a model system to study cell-cycle-dependent events since nuclear division is naturally synchronous. This organism was shown to release isoxanthopterin which is structurally related to tetrahydrobiopterin, a cofactor of aromatic amino acid hydroxylases and of nitric oxide synthases (NOSs) (EC 1.14.13.39). Here, we studied Physarum pteridine biosynthesis in more detail and found that high amounts of tetrahydrobiopterin are produced and NOS activity is expressed. Physarum pteridine biosynthesis is peculiar in as much as 7,8-dihydroneopterin aldolase (EC 4.1.2.25), an enzyme of folic acid biosynthesis usually not found in organisms producing tetrahydrobiopterin, is detected in parallel. NOS purified from Physarum depends on NADPH, tetrahydrobiopterin and flavins. Enzyme activity is independent of exogenous Ca2+ and is inhibited by arginine analogues. The purified enzyme (with a molecular mass of 130 kDa) contains tightly bound tetrahydrobiopterin and flavins. During the synchronous cell cycle of Physarum, pteridine biosynthesis increases during S-phase whereas NOS activity peaks during mitosis, drops at telophase and peaks again during early S-phase. Our results characterize Physarum pteridine biosynthesis and NOS and suggest a possible link between NOS activity and mitosis.


1984 ◽  
Vol 4 (12) ◽  
pp. 2858-2864 ◽  
Author(s):  
R K Storms ◽  
R W Ord ◽  
M T Greenwood ◽  
B Mirdamadi ◽  
F K Chu ◽  
...  

Synchronous populations of Saccharomyces cerevisiae cells, generated by two independent methods, have been used to show that thymidylate synthase, in contrast to the vast majority of cellular proteins thus far examined, fluctuates periodically during the S. cerevisiae cell cycle. The enzyme, as assayed by two different methods, accumulated during S period and peaked in mid to late S phase, and then its level dropped. These observations suggest that both periodic synthesis and the instability of the enzyme contribute to the activity profile seen during the cell cycle. Accumulation of thymidylate synthase is determined at the level of its transcript, with synthase-specific mRNA levels increasing at least 10-fold to peak near the beginning of S period and then falling dramatically to basal levels after the onset of DNA synthesis. This mRNA peak coincided with the time during the cell cycle when thymidylate synthase levels were increasing maximally and immediately preceded the peak of DNA synthesis, for which the enzyme provides precursor dTMP.


2012 ◽  
Vol 287 (15) ◽  
pp. 11891-11898 ◽  
Author(s):  
Kyung Yong Lee ◽  
Sung Woong Bang ◽  
Sang Wook Yoon ◽  
Seung-Hoon Lee ◽  
Jong-Bok Yoon ◽  
...  

During the late M to the G1 phase of the cell cycle, the origin recognition complex (ORC) binds to the replication origin, leading to the assembly of the prereplicative complex for subsequent initiation of eukaryotic chromosome replication. We found that the cell cycle-dependent phosphorylation of human ORC2, one of the six subunits of ORC, dissociates ORC2, -3, -4, and -5 (ORC2–5) subunits from chromatin and replication origins. Phosphorylation at Thr-116 and Thr-226 of ORC2 occurs by cyclin-dependent kinase during the S phase and is maintained until the M phase. Phosphorylation of ORC2 at Thr-116 and Thr-226 dissociated the ORC2–5 from chromatin. Consistent with this, the phosphomimetic ORC2 protein exhibited defective binding to replication origins as well as to chromatin, whereas the phosphodefective protein persisted in binding throughout the cell cycle. These results suggest that the phosphorylation of ORC2 dissociates ORC from chromatin and replication origins and inhibits binding of ORC to newly replicated DNA.


Sign in / Sign up

Export Citation Format

Share Document