scholarly journals Intersection of two key signal integrators in the cell: activator of G-protein signaling 3 and dishevelled-2

2020 ◽  
Vol 133 (17) ◽  
pp. jcs247908
Author(s):  
Ali Vural ◽  
Stephen M. Lanier

ABSTRACTActivator of G-protein signaling 3 (AGS3, encoded by GPSM1) was discovered as a one of several receptor-independent activators of G-protein signaling, which are postulated to provide a platform for divergence between canonical and noncanonical G-protein signaling pathways. Similarly, Dishevelled (DVL) proteins serve as a point of divergence for β-catenin-dependent and -independent signaling pathways involving the family of Frizzled (FZD) ligands and cell-surface WNT receptors. We recently discovered the apparent regulated localization of dishevelled-2 (DVL2) and AGS3 to distinct cellular puncta, suggesting that the two proteins interact as part of various cell signaling systems. To address this hypothesis, we asked the following questions: (1) do AGS3 signaling pathways influence the activation of β-catenin (CTNNB1)-regulated transcription through the WNT–Frizzled–Dishevelled axis, and (2) is the AGS3 and DVL2 interaction regulated? The interaction of AGS3 and DVL2 was regulated by protein phosphorylation, subcellular distribution, and a cell-surface G-protein-coupled receptor. These data, and the commonality of functional system impacts observed for AGS3 and DVL2, suggest that the AGS3–DVL2 complex presents an unexpected path for functional integration within the cell.This article has an associated First Person interview with the first author of the paper.

2021 ◽  
Vol 14 (673) ◽  
pp. eaax3053
Author(s):  
Mieke Metzemaekers ◽  
Anneleen Mortier ◽  
Alessandro Vacchini ◽  
Daiane Boff ◽  
Karen Yu ◽  
...  

The inflammatory human chemokine CXCL5 interacts with the G protein–coupled receptor CXCR2 to induce chemotaxis and activation of neutrophils. CXCL5 also has weak agonist activity toward CXCR1. The N-terminus of CXCL5 can be modified by proteolytic cleavage or deimination of Arg9 to citrulline (Cit), and these modifications can occur separately or together. Here, we chemically synthesized native CXCL5(1–78), truncated CXCL5 [CXCL5(9–78)], and the citrullinated (Cit9) versions and characterized their functions in vitro and in vivo. Compared with full-length CXCL5, N-terminal truncation resulted in enhanced potency to induce G protein signaling and β-arrestin recruitment through CXCR2, increased CXCL5-initiated internalization of CXCR2, and greater Ca2+ signaling downstream of not only CXCR2 but also CXCR1. Citrullination did not affect the capacity of CXCL5 to activate classical or alternative signaling pathways. Administering the various CXCL5 forms to mice revealed that in addition to neutrophils, CXCL5 exerted chemotactic activity toward monocytes and that this activity was increased by N-terminal truncation. These findings were confirmed by in vitro chemotaxis and Ca2+ signaling assays with primary human CD14+ monocytes and human THP-1 monocytes. In vitro and in vivo analyses suggested that CXCL5 targeted monocytes through CXCR1 and CXCR2. Thus, truncation of the N-terminus makes CXCL5 a more potent chemoattractant for both neutrophils and monocytes that acts through CXCR1 and CXCR2.


Author(s):  
Mizuho Horioka ◽  
Emilie Ceraudo ◽  
Emily Lorenzen ◽  
Thomas P. Sakmar ◽  
Thomas Huber

AbstractMany G protein-coupled receptors (GPCRs) signal through more than one subtype of heterotrimeric G proteins. For example, the C–C chemokine receptor type 5 (CCR5), which serves as a co-receptor to facilitate cellular entry of human immunodeficiency virus 1 (HIV-1), normally signals through the heterotrimeric G protein, Gi. However, CCR5 also exhibits G protein signaling bias and certain chemokine analogs can cause a switch to Gq pathways to induce Ca2+ signaling. We want to understand how much of the Ca2+ signaling from Gi-coupled receptors is due to G protein promiscuity and how much is due to transactivation and crosstalk with other receptors. We propose a possible mechanism underlying the apparent switching between different G protein signaling pathways. We show that chemokine-mediated Ca2+ flux in HEK293T cells expressing CCR5 can be primed and enhanced by ATP pretreatment. In addition, agonist-dependent lysosomal exocytosis results in the release of ATP to the extracellular milieu, which amplifies cellular signaling networks. ATP is quickly degraded via ADP and AMP to adenosine. ATP, ADP and adenosine activate different cell surface purinergic receptors. Endogenous Gq-coupled purinergic P2Y receptors amplify Ca2+ signaling and allow for Gi- and Gq-coupled receptor signaling pathways to converge. Associated secretory release of GPCR ligands, such as chemokines, opioids, and monoamines, should also lead to concomitant release of ATP with a synergistic effect on Ca2+ signaling. Our results suggest that crosstalk between ATP-activated purinergic receptors and other Gi-coupled GPCRs is an important cooperative mechanism to amplify the intracellular Ca2+ signaling response.


2004 ◽  
Vol 489 (3) ◽  
pp. 139-149 ◽  
Author(s):  
Mark Ozeck ◽  
Paul Brust ◽  
Hong Xu ◽  
Guy Servant

2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Katelin E. Ahlers-Dannen ◽  
Mohammed Alqinyah ◽  
Christopher Bodle ◽  
Josephine Bou Dagher ◽  
Bandana Chakravarti ◽  
...  

Regulator of G protein Signaling, or RGS, proteins serve an important regulatory role in signaling mediated by G protein-coupled receptors (GPCRs). They all share a common RGS domain that directly interacts with active, GTP-bound Gα subunits of heterotrimeric G proteins. RGS proteins stabilize the transition state for GTP hydrolysis on Gα and thus induce a conformational change in the Gα subunit that accelerates GTP hydrolysis, thereby effectively turning off signaling cascades mediated by GPCRs. This GTPase accelerating protein (GAP) activity is the canonical mechanism of action for RGS proteins, although many also possess additional functions and domains. RGS proteins are divided into four families, R4, R7, R12 and RZ based on sequence homology, domain structure as well as specificity towards Gα subunits. For reviews on RGS proteins and their potential as therapeutic targets, see e.g. [160, 377, 411, 415, 416, 512, 519, 312, 6].


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205015
Author(s):  
Tomás Osorno ◽  
Oscar Arenas ◽  
Nelson J. Ramírez-Suarez ◽  
Fabio A. Echeverry ◽  
María del Pilar Gomez ◽  
...  

Physiology ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 72-84 ◽  
Author(s):  
Marie E. Burns ◽  
Edward N. Pugh

Phototransduction in retinal rods is one of the most extensively studied G-protein signaling systems. In recent years, our understanding of the biochemical steps that regulate the deactivation of the rod's response to light has greatly improved. Here, we summarize recent advances and highlight some of the remaining puzzles in this model signaling system.


2009 ◽  
Vol 21 (1) ◽  
pp. 189
Author(s):  
V. H. Dang ◽  
E.-B. Jeung

Calbindin-D9k (CaBP-9k), a cytosolic protein, is one of the members of the family of vitamin D-dependent calcium-binding proteins with high affinity for calcium. The previous in vitro studies indicated that this gene is controlled by 17β-estradiol (E2), a physiological estrogen, via both genomic (through its classical nuclear receptors) and non-genomic (through different cypoplasmic signals) mechanisms. In order to provide a better understanding in molecular events by which E2 exerts its actions in the regulation of CaBP-9k, we employed GH3 cells as an in vitro model to examine the possible non-genomic effects of E2 on the induction of CaBP-9k. GH3 cells were treated dose-dependently (10–5, 10–6, 10–7, 10–8, and 10–9 m) with E2-BSA, a membrane-impermeable E2 conjugated with BSA, for 24 h. To examine the time dependency, the cells were also exposed to a high concentration (10–6 m) of E2-BSA and harvested at various time points (5 min, 15 min, 30 min, 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h). Furthermore, in order to determine the potential involvement of non-genomic signaling pathways in E2-BSA-induced expression of CaBP-9k, several inhibitors also were employed, including ICI 182 780 for membrane estrogen receptor (ER) pathway, pertussis toxin (PTX) for G protein signaling, U0126 for ERK pathway, and wortmannin for Akt pathway. The non-genomic effects of E2-BSA on the induction of CaBP-9k mRNA and protein were determined by semi-quantitative RT-PCR and Western blotting, respectively. In a dose-dependent manner, administration with E2-BSA (10–6 m) induced the highest response of CaBP-9k at transcriptional (mRNA) level, whereas protein level of CaBP-9k peaked at E2-BSA concentration (10–7 m) at 24 h. In a time course, E2-BSA (10–6 m) exposure caused a significant increase in both CaBP-9k mRNA and protein expressions as early as 15 min and peaked at 24 h. Co-treatment with ICI 182 780 and PTX completely inhibited E2-BSA-induced CaBP-9k mRNA and protein expressions. Interestingly, although co-treatments with U0126 and/or wortmannin alone failed to attenuate the effects of E2-BSA, a combination of 2 inhibitors completely reversed E2-BSA-induced CaBP-9k expressions at both transcriptional (mRNA) and translational (protein) levels, suggesting their involvement in the regulation of CaBP-9k in GH3 cells. Taken together, these results demonstrate that various signaling pathways may be involved in E2-induced regulation of CaBP-9k in which membrane ER and G protein signaling pathways play a central role in non-genomic responses. Further in vitro experiments are required to elucidate additional details of the interaction of ERK and Akt pathways in the regulation of CaBP-9k in these cells, offering a new insight into the mode of E2 action in the pituitary gland of human and wildlife.


Sign in / Sign up

Export Citation Format

Share Document