scholarly journals Ribosome-associated quality control of membrane proteins at the endoplasmic reticulum

2020 ◽  
Vol 133 (22) ◽  
pp. jcs251983
Author(s):  
Ben P. Phillips ◽  
Elizabeth A. Miller

ABSTRACTProtein synthesis is an energetically costly, complex and risky process. Aberrant protein biogenesis can result in cellular toxicity and disease, with membrane-embedded proteins being particularly challenging for the cell. In order to protect the cell from consequences of defects in membrane proteins, quality control systems act to maintain protein homeostasis. The majority of these pathways act post-translationally; however, recent evidence reveals that membrane proteins are also subject to co-translational quality control during their synthesis in the endoplasmic reticulum (ER). This newly identified quality control pathway employs components of the cytosolic ribosome-associated quality control (RQC) machinery but differs from canonical RQC in that it responds to biogenesis state of the substrate rather than mRNA aberrations. This ER-associated RQC (ER-RQC) is sensitive to membrane protein misfolding and malfunctions in the ER insertion machinery. In this Review, we discuss the advantages of co-translational quality control of membrane proteins, as well as potential mechanisms of substrate recognition and degradation. Finally, we discuss some outstanding questions concerning future studies of ER-RQC of membrane proteins.

2013 ◽  
Vol 24 (11) ◽  
pp. 1765-1775 ◽  
Author(s):  
Kunio Nakatsukasa ◽  
Jeffrey L. Brodsky ◽  
Takumi Kamura

During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.


2014 ◽  
Vol 204 (6) ◽  
pp. 869-879 ◽  
Author(s):  
Annamaria Ruggiano ◽  
Ombretta Foresti ◽  
Pedro Carvalho

Even with the assistance of many cellular factors, a significant fraction of newly synthesized proteins ends up misfolded. Cells evolved protein quality control systems to ensure that these potentially toxic species are detected and eliminated. The best characterized of these pathways, the ER-associated protein degradation (ERAD), monitors the folding of membrane and secretory proteins whose biogenesis takes place in the endoplasmic reticulum (ER). There is also increasing evidence that ERAD controls other ER-related functions through regulated degradation of certain folded ER proteins, further highlighting the role of ERAD in cellular homeostasis.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009255
Author(s):  
Zhanna Lipatova ◽  
Valeriya Gyurkovska ◽  
Sarah F. Zhao ◽  
Nava Segev

Thirty percent of all cellular proteins are inserted into the endoplasmic reticulum (ER), which spans throughout the cytoplasm. Two well-established stress-induced pathways ensure quality control (QC) at the ER: ER-phagy and ER-associated degradation (ERAD), which shuttle cargo for degradation to the lysosome and proteasome, respectively. In contrast, not much is known about constitutive ER-phagy. We have previously reported that excess of integral-membrane proteins is delivered from the ER to the lysosome via autophagy during normal growth of yeast cells. Whereas endogenously expressed ER resident proteins serve as cargos at a basal level, this level can be induced by overexpression of membrane proteins that are not ER residents. Here, we characterize this pathway as constitutive ER-phagy. Constitutive and stress-induced ER-phagy share the basic macro-autophagy machinery including the conserved Atgs and Ypt1 GTPase. However, induction of stress-induced autophagy is not needed for constitutive ER-phagy to occur. Moreover, the selective receptors needed for starvation-induced ER-phagy, Atg39 and Atg40, are not required for constitutive ER-phagy and neither these receptors nor their cargos are delivered through it to the vacuole. As for ERAD, while constitutive ER-phagy recognizes cargo different from that recognized by ERAD, these two ER-QC pathways can partially substitute for each other. Because accumulation of membrane proteins is associated with disease, and constitutive ER-phagy players are conserved from yeast to mammalian cells, this process could be critical for human health.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Yoon Seon Yoo ◽  
Hye Gyeong Han ◽  
Young Joo Jeon

The endoplasmic reticulum (ER) is a pivotal regulator of folding, quality control, trafficking, and targeting of secreted and transmembrane proteins, and accordingly, eukaryotic cells have evolved specialized machinery to ensure that the ER enables these proteins to acquire adequate folding and maturation in the presence of intrinsic and extrinsic insults. This adaptive capacity of the ER to intrinsic and extrinsic perturbations is important for maintaining protein homeostasis, which is termed proteostasis. Failure in adaptation to these perturbations leads to accumulation of misfolded or unassembled proteins in the ER, which is termed ER stress, resulting in the activation of unfolded protein response (UPR) of the ER and the execution of ER-associated degradation (ERAD) to restore homeostasis. Furthermore, both of the two axes play key roles in the control of tumor progression, inflammation, immunity, and aging. Therefore, understanding UPR of the ER and subsequent ERAD will provide new insights into the pathogenesis of many human diseases and contribute to therapeutic intervention in these diseases.


2006 ◽  
Vol 6 ◽  
pp. 967-983 ◽  
Author(s):  
Cédric Pety de Thozée ◽  
Michel Ghislain

Proteins destined for the secretory pathway are translocated into the endoplasmic reticulum (ER), where they are subjected to a variety of post-translational modifications before they reach their final destination. Newly synthesized proteins that have defect in polypeptide folding or subunit assembly are recognized by quality control systems and eliminated by the 26S proteasome, a cytosolic ATP-dependent proteolytic machinery. Delivery of non-native ER proteins to the proteasome requires retrograde transport across the ER membrane and depends on a protein-unfolding machine consisting of Cdc48p, Ufd1p, and Npl4p. Recent studies in yeast have highlighted the possible function of the Sar1p/COPII machinery in ER-associated degradation of some lumenal and membrane proteins.


2004 ◽  
Vol 15 (2) ◽  
pp. 908-921 ◽  
Author(s):  
Gregory Huyer ◽  
Gaby L. Longsworth ◽  
Deborah L. Mason ◽  
Monica P. Mallampalli ◽  
J. Michael McCaffery ◽  
...  

The folding of nascent secretory and membrane proteins is monitored by the endoplasmic reticulum (ER) quality control system. Misfolded proteins are retained in the ER and can be removed by ER-associated degradation. As a model for the ER quality control of multispanning membrane proteins in yeast, we have been studying mutant forms of Ste6p. Here, we identify mislocalized mutant forms of Ste6p that induce the formation of, and localize to, prominent structures that are absent in normal cells. We have named these structures ER-associated compartments (ERACs), based on their juxtaposition to and connection with the ER, as observed by fluorescence and electron microscopy. ERACs comprise a network of tubulo-vesicular structures that seem to represent proliferated ER membranes. Resident ER lumenal and membrane proteins are present in ERACs in addition to their normal ER localization, suggesting there is no barrier for their entry into ERACs. However, the forms of Ste6p in ERACs are excluded from the ER and do not enter the secretory pathway; instead, they are ultimately targeted for ER-associated degradation. The presence of ERACs does not adversely affect secretory protein traffic through the ER and does not lead to induction of the unfolded protein response. We propose that ERACs may be holding sites to which misfolded membrane proteins are specifically diverted so as not to interfere with normal cellular functions. We discuss the likelihood that related ER membrane proliferations that form in response to certain other mutant or unassembled membrane proteins may be substantially similar to ERACs.


2000 ◽  
Vol 11 (5) ◽  
pp. 1657-1672 ◽  
Author(s):  
Pascal Béguin ◽  
Udo Hasler ◽  
Olivier Staub ◽  
Käthi Geering

The molecular nature of determinants that mediate degradation of unassembled, polytopic subunits of oligomeric membrane proteins and their stabilization after partner subunit assembly is largely unknown. Expressing truncated Na,K-ATPase α subunits alone or together with β subunits, we find that in unassembled α subunits neither the four N-terminal transmembrane segments acting as efficient alternating signal anchor–stop transfer sequences nor the large, central cytoplasmic loop exposes any degradation signal, whereas poor membrane insertion efficiency of C-terminal membrane domains M5, M7, and M9 coincides with the transient exposure of degradation signals to the cytoplasmic side. β assembly with an α domain comprising at least D902 up to Y910 in the extracytoplasmic M7/M8 loop is necessary to stabilize Na,K-ATPase α subunits by favoring M7/M8 membrane pair formation and by protecting a degradation signal recognized from the endoplasmic reticulum (ER) lumenal side. Thus our results suggest that ER degradation of Na,K-ATPase α subunits is 1) mainly mediated by folding defects caused by inefficient membrane insertion of certain membrane domains, 2) a multistep process, which involves proteolytic and/or chaperone components acting from the ER lumenal side in addition to cytosolic, proteasome-related factors, and 3) prevented by partner subunit assembly because of direct protection and retrieval of degradation signals from the cytoplasm to the ER lumenal side. These results likely represent a paradigm for the ER quality control of unassembled, polytopic subunits of oligomeric membrane proteins.


2021 ◽  
Vol 22 (3) ◽  
pp. 1061
Author(s):  
Kunio Nakatsukasa

Misfolded and/or unassembled secretory and membrane proteins in the endoplasmic reticulum (ER) may be retro-translocated into the cytoplasm, where they undergo ER-associated degradation, or ERAD. The mechanisms by which misfolded proteins are recognized and degraded through this pathway have been studied extensively; however, our understanding of the physiological role of ERAD remains limited. This review describes the biosynthesis and quality control of glycosylphosphatidylinositol (GPI)-anchored proteins and briefly summarizes the relevance of ERAD to these processes. While recent studies suggest that ERAD functions as a fail-safe mechanism for the degradation of misfolded GPI-anchored proteins, several pieces of evidence suggest an intimate interaction between ERAD and the biosynthesis of GPI-anchored proteins.


Author(s):  
Lihui Wang ◽  
Yihong Ye

Protein translocation across membranes is a critical facet of protein biogenesis in compartmentalized cells as proteins synthesized in the cytoplasm often need to traverse across lipid bilayers via proteinaceous channels to reach their final destinations. It is well established that protein biogenesis is tightly linked to various protein quality control processes, which monitor errors in protein folding, modification, and localization. However, little is known about how cells cope with translocation defective polypeptides that clog translocation channels (translocons) during protein translocation. This review summarizes recent studies, which collectively reveal a set of translocon-associated quality control strategies for eliminating polypeptides stuck in protein-conducting channels in the endoplasmic reticulum and mitochondria.


Sign in / Sign up

Export Citation Format

Share Document