scholarly journals Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules

2021 ◽  
Author(s):  
Chengye Feng ◽  
Joseph M. Cleary ◽  
Gregory O. Kothe ◽  
Michelle C. Stone ◽  
Alexis T. Weiner ◽  
...  

Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules while axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, EB1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.

1991 ◽  
Vol 113 (5) ◽  
pp. 1069-1080 ◽  
Author(s):  
N Watanabe ◽  
N Tsukada ◽  
C R Smith ◽  
M J Phillips

Modern fluorescence microscopic techniques were used to image the bile canalicular system in the intact rat liver, in vivo. By combining the use of sodium fluorescein secretion into bile, with digitally enhanced fluorescence microscopy and time-lapse video, it was possible to capture and record the canalicular motility events that accompany the secretion of bile in life. Active bile canalicular contractions were found predominantly in zone 1 (periportal) hepatocytes of the liver. The contractile movements were repetitive, forceful, and appeared unidirectional moving bile in a direction towards the portal bile ducts. Contractions were not seen in the network of canaliculi on the surface of the liver. Cytochalasin B administration resulted in reduced canalicular motility, progressive dilation of zone 1 canaliculi, and impairment of bile flow. Canalicular dilations invariably involved the branch points of the canalicular network. The findings add substantively to previous in vitro studies using couplets, and suggest that canalicular contractions contribute physiologically to bile flow in the liver.


2017 ◽  
Vol 22 (5) ◽  
pp. 602-613 ◽  
Author(s):  
Daniela Unterleuthner ◽  
Nina Kramer ◽  
Karoline Pudelko ◽  
Alexandra Burian ◽  
Markus Hengstschläger ◽  
...  

Angiogenesis is a promising target for anticancer therapies, but also for treating other diseases with pathologic vessel development. Targeting the vascular endothelial growth factor (VEGF) pathway did not proof as effective as expected due to emerging intrinsic resistance mechanisms, as well as stromal contributions leading to drug insensitivity. Therefore, alternative strategies affecting the interaction of endothelial cells (ECs) with other stromal cells seem to be more promising. Human preclinical in vitro angiogenesis models successfully recapitulating these interactions are rare, and two-dimensional (2D) cell cultures cannot mimic tissue architecture in vivo. Consequently, models combining three-dimensionality with heterotypic cell interaction seem to be better suited. Here, we report on an improved human fibroblast–EC coculture assay mimicking sprouting angiogenesis from EC-covered microbeads resembling existing endothelial structures. Culture conditions were optimized to assess pro- and antiangiogenic compounds. Important characteristics of angiogenesis, that is, the number of sprouts and branch points, sprout length protrusion, and overall vessel structure areas, were quantified. Notably, the endothelial sprouts display lumen formation and basal membrane establishment. In this model, angiogenesis can be inhibited by genetic interference of pro-angiogenic factors expressed in the fibroblasts. Moreover, bona fide antiangiogenic drugs decreased, whereas pro-angiogenic factors increased vessel formation in 24-well and 96-well settings, demonstrating the applicability for screening approaches.


2021 ◽  
Vol 11 (5) ◽  
pp. 362-378
Author(s):  
Ani Oranda Panjaitan ◽  
Dewi Sukmawati ◽  
Ria Anggraeni

Tube formation assay is the most widely used method as a vasculogenesis/ angiogenesis test in vitro. Mesenchymal stem cells (MSCs) are multipotent adult cells. The paracrine effect of MSCs on neovascularization is well known. In general, MSCs do not express CD34 hematopoietic surface marker, but according to some experts, bone marrow mesenchymal stem cells (BM-MSCs) express CD34 in vivo and lose their expression when they are cultured in vitro, while adipose-derived stem cells (ASCs) still have CD34 expression in the early passages when cultured in vitro. BM-MSCs are the most widely used MSC, but ASCs are also used in stem cell therapy and tissue engineering for angiogenesis purposes. Until now, the potential of vasculogenesis between ASCs and BM-MSCs is still unclear. Expression of CD34 is also unknown whether affecting the quality of tube formation. This study wanted to compare the potential of vasculogenesis between ASC and BM-MSCs through tube formation test and CD34 expression.Measurements of vasculogenesis quality showed higher tube length, number of loopsand mean number of branch points on BM-MSC. Both BM-MSCs and ASCs showed low CD34 levels.BM-MSCs showed better tube formation ability compared with ASCs. No association was found between CD34 levels and MSC vasculogenesis capability. Key words: ASCs, BM-MSCs, CD34, matrigel, tube formation.


2017 ◽  
Vol 28 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Barbara J. Mann ◽  
Sai K. Balchand ◽  
Patricia Wadsworth

Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2975-2985 ◽  
Author(s):  
Takashi Kasukabe ◽  
Junko Okabe-Kado ◽  
Yoshio Honma

Abstract Mouse monocytic Mm-A, Mm-P, Mm-S1, and Mm-S2 cells are sublines of mouse monocytic and immortalized Mm-1 cells derived from spontaneously differentiated, mouse myeloblastic M1 cells. Although these subline cells retain their monocytic characteristics in vitro, Mm-A and Mm-P cells are highly leukemogenic to syngeneic SL mice and athymic nude mice, whereas Mm-S1 and Mm-S2 cells are not or are only slightly leukemogenic. To better understand the molecular mechanisms of these levels of leukemogenicity, we investigated putative leukemogenesis-associated genes or oncogenes involved in the maintenance of growth, especially in vivo, by means of differential mRNA display. We isolated a fragment clone (15T01) from Mm-P cells. The mRNA probed with 15T01 was expressed at high levels in leukemogenic Mm-P and Mm-A cells but not in nonleukemogenic Mm-S1 and Mm-S2 cells. The gene corresponding to 15T01, named TRA1, was isolated from an Mm-P cDNA library. The longest open reading frame of the TRA1 clone predicts a peptide containing 204 amino acids with a calculated molecular weight of 23,049 D. The predicted TRA1 protein is cysteine-rich and contains multiple cysteine doublets. A putative normal counterpart gene, named NOR1, was also isolated from a normal mouse kidney cDNA library and sequenced. NOR1 cDNA predicts a peptide containing 234 amino acids. The sequence of 201 amino acids from the C-terminal NOR1 was completely identical to that of TRA1, whereas the remaining N-terminal amino acids (33 amino acids) were longer than that (3 amino acids) of TRA1 and the N-terminus of NOR1 protein contained proline-rich sequence. A similarity search against current nucleotide and protein sequence databases indicated that the NOR1/TRA1 gene(s) is conserved in a wide range of eukaryotes, because apparently homologous genes were identified in Caenorhabditis elegans and Saccharomyces cerevisiae genomes. Northern blotting using TRA1-specific and NOR1-specific probes indicated that TRA1 mRNA is exclusively expressed in leukemogenic but not in nonleukemogenic Mm sublines and normal tissues and also indicated that NOR1 mRNA is expressed in normal tissues, especially in kidney, lung, liver, and bone marrow cells but not in any Mm sublines. After leukemogenic Mm-P cells were induced to differentiate into normal macrophages by sodium butyrate, the normal counterpart, NOR1, was expressed, whereas the TRA1 level decreased. Furthermore, transfection of TRA1 converted nonleukemogenic Mm-S1 cells into leukemogenic cells. These results indicate that the TRA1 gene is associated at least in part with the leukemogenesis of monocytic Mm sublines.


2017 ◽  
Vol 2 ◽  
pp. 18 ◽  
Author(s):  
Katie R. Hughes ◽  
Andy P. Waters

A deeper understanding of the biology of the Plasmodium parasite is essential in order to identify targets for interventions, with the ultimate aim of eliminating malaria. Determining the function(s) of essential proteins in Plasmodium has, until recently, been hampered by the lack of efficient conditional systems to abrogate proteins. We report the adaptation of a conditional technology, knocksideways (KS), for use in Plasmodium berghei, which can potentially rapidly inactivate proteins of interest through relocalisation. The system is induced using rapamycin, which allows for KS both in vitro and in vivo and is effective more rapidly than any other reported system. KS utilises pairs of fluorescent tags that facilitate live imaging and allows for rapid confirmation of efficient protein redistribution on live parasites, allowing for streamlined workflows. We demonstrate the characteristics of the system using transgenically expressed cytoplasmic GFP and provide proof of principle by inducibly redistributing a number of proteins with different native, subcellular locations.  We also demonstrate that KS can be applied to both mammalian and insect stages of Plasmodium. KS expands the range of (conditional) technologies for genetic manipulation of malaria parasites and offers the potential to be further developed for medium throughput phenotype screens.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Lara Katharina Krüger ◽  
Matthieu Gélin ◽  
Liang Ji ◽  
Carlos Kikuti ◽  
Anne Houdusse ◽  
...  

Mitotic spindle function depends on the precise regulation of microtubule dynamics and microtubule sliding. Throughout mitosis, both processes have to be orchestrated to establish and maintain spindle stability. We show that during anaphase B spindle elongation in S. pombe, the sliding motor Klp9 (kinesin-6) also promotes microtubule growth in vivo. In vitro, Klp9 can enhance and dampen microtubule growth, depending on the tubulin concentration. This indicates that the motor is able to promote and block tubulin subunit incorporation into the microtubule lattice in order to set a well-defined microtubule growth velocity. Moreover, Klp9 recruitment to spindle microtubules is dependent on its dephosphorylation mediated by XMAP215/Dis1, a microtubule polymerase, creating a link between the regulation of spindle length and spindle elongation velocity. Collectively, we unravel the mechanism of anaphase B, from Klp9 recruitment to the motors dual-function in regulating microtubule sliding and microtubule growth, allowing an inherent coordination of both processes.


Author(s):  
A. T. Molines ◽  
J. Lemière ◽  
C.H. Edrington ◽  
C-T. Hsu ◽  
I.E. Steinmark ◽  
...  

AbstractThe cytoplasm represents a crowded environment whose properties may change according to physiological or developmental states. Although the effects of crowding and viscosity on in vitro reactions have been well studied, if and how the biophysical properties of the cytoplasm impact cellular functions in vivo remain poorly understood. Here, we probed the effects of cytoplasmic concentration on microtubule (MT) dynamics by studying the effects of osmotic shifts in the fission yeast Schizosaccharomyces pombe. Increasing cytoplasmic concentration by hyperosmotic shock led to proportionate reductions in the rates of interphase MT growth and shrinkage. Conversely, dilution of the cytoplasm in hypoosmotic shifts led to proportionately faster rates. Numerous lines of evidence indicate that these effects were due to biophysical properties of the cytoplasm. These effects were recapitulated in in vitro reconstituted MT assays by modulating viscosity, not by crowding. Our findings suggest that even at normal conditions, the viscous properties of cytoplasm modulate the dynamic reactions of MT polymerization and depolymerization.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009870
Author(s):  
Nina Svensen ◽  
Susan Wyllie ◽  
David W. Gray ◽  
Manu De Rycker

Chagas disease, caused by the protozoan intracellular parasite Trypanosoma cruzi, is a highly neglected tropical disease, causing significant morbidity and mortality in central and south America. Current treatments are inadequate, and recent clinical trials of drugs inhibiting CYP51 have failed, exposing a lack of understanding of how to translate laboratory findings to the clinic. Following these failures many new model systems have been developed, both in vitro and in vivo, that provide improved understanding of the causes for clinical trial failures. Amongst these are in vitro rate-of-kill (RoK) assays that reveal how fast compounds kill intracellular parasites. Such assays have shown clear distinctions between the compounds that failed in clinical trials and the standard of care. However, the published RoK assays have some key drawbacks, including low time-resolution and inability to track the same cell population over time. Here, we present a new, live-imaging RoK assay for intracellular T. cruzi that overcomes these issues. We show that the assay is highly reproducible and report high time-resolution RoK data for key clinical compounds as well as new chemical entities. The data generated by this assay allow fast acting compounds to be prioritised for progression, the fate of individual parasites to be tracked, shifts of mode-of-action within series to be monitored, better PKPD modelling and selection of suitable partners for combination therapy.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Irinna Papangeli ◽  
Jongmin Kim ◽  
Inna Maier ◽  
Yujung Kang ◽  
Keiichiro Tanaka ◽  
...  

Rationale: Sprouting angiogenesis is governed by the concept of tip/stalk cells that guides our understanding of the transition from vascular sprouting to maturation and ultimately quiescence. The VEGF and Notch signaling pathways have been extensively described in regulating the discrimination between these two cell populations. However, several additional tip and stalk cell specific genes have been identified. To date, unresolved questions remain, and our understanding of the mechanisms by which these signaling processes are integrated is incomplete. Objective: We set out to investigate novel mechanisms by which signaling pathways involving two G protein coupled receptors (GPCRs), expressed in a mutually exclusive fashion in the tip/stalk cell populations, are intricately linked in vascular development. Methods/Results: Using a combination of in vivo and in vitro techniques, we demonstrate the critical role of crosstalk between APLNR and CXCR4 in vascular maturation. We show robust flow induced expression of the stalk cell specific APLNR, that leads to marked suppression of CXCR4 expression, a mechanism to achieve tip cell restricted expression of the latter. Retinas from Apln (ligand), Aplnr (receptor) and endothelial specific Aplnr deleted mice show retarded vascular expansion, reduced vascularized area and fewer vascular branch points. These phenotypes are in part due to increased expression of Cxcr4 in Apln-/- and Aplnr-/- retinal vessels as Cxcr4 inhibition through a selective inhibitor can ameliorate the Aplnr phenotype. The crosstalk between the two GPCRs was found to involve a key shear responsive microRNA, miR-139-5p, which is upregulated by APLN/APLNR signaling and directly targets CXCR4 in endothelial cells. In accordance, Apln-/- and Aplnr-/- retinal endothelial cells showed depleted levels of miR-139-5p. Lastly, we demonstrate that atorvastatin, an HMG-CoA reductase inhibitor shown to enhance APLNR signaling, can induce miR-139-5p expression and rescue the vascular phenotypes associated with APLN/APLNR deficiency. Conclusions: These findings provide key mechanistic insights into a critical microRNA based crosstalk between two GPCR signaling cascades, which regulates important steps in vascular maturation.


Sign in / Sign up

Export Citation Format

Share Document