The dissociation of nuclear proteins from superhelical DNA

1978 ◽  
Vol 29 (1) ◽  
pp. 103-116
Author(s):  
J.M. Levin ◽  
E. Jost ◽  
P.R. Cook

Structures retaining many of the morphological features of nuclei may be released by gently lysing human cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids contain superhelical DNA. Using a double-labelling procedure we have compared, at different salt concentrations, the amounts and types of protein associated with human nucleoides containings superhelical or relaxed DNA. We find that the slightly lysine-rich histones (H2A and H2B) but not the arginine-rich histones (H3 and H4) dissociate more slowly from nucleoids containing superhelical DNA than from those containing relaxed DNA. A protein of apparent molecular weight of 22000 also binds more tightly to superhelical DNA. We conclude that this protein and the slightly lysine-rich histones transmute free energy of supercoiling into binding energy when they bind to superhelical DNA.

1978 ◽  
Vol 33 (9-10) ◽  
pp. 723-730 ◽  
Author(s):  
Georg H. Schmid ◽  
Wilhelm Menke ◽  
Alfons Radunz ◽  
Friederike Koenig

Abstract From stroma-freed chloroplasts of Antirrhinum majus polypeptides with the apparent molecular weights 44 000, 26 000 and 20 000 were isolated.The antiserum to a polypeptide with the moleculair weight 44 000 inhibits the photoreduction of anthraquinone-2-sulfonate with dichlorophenol indophenol/ascorbate when the concentration of the electron donor dichlorophenol indophenol is low. The antiserum enhances the rate of phenazine methosulfate-mediated cyclic photophosphorylation. The variable fluorescence yield is increased by the antiserum . It is assumed that this polypeptide plays a role in electron transport between the two photosystems. From two polypeptides with the apparent molecular weight 26 000 one seems to belong to the reaction center of photosystem II as it inhibits the photooxidation of tetramethyl benzidine and diphenyl carbazide with suitable electron acceptors and inhibits electron transport between water and silicomolybdate. Variable fluorescence is not or not too strong decreased by the antiserum . The other polypeptide of the apparent molecular weight 26 000 inhibits the photoreduction of anthraquinone-2-sulfonate with high concentrations of dichlorophenol indophenol as the electron donor. Phenazine methosulfate-mediated cyclic photophosphorylation is also inhibited by the antiserum . Therefore, we should like to associate it with the reaction center of photosystem I. The antiserum to the polypeptide with the apparent molecular weight 20 000 inhibits the photoreduction of anthraquinone-2-sulfonate with low and high concentrations of the electron donor dichlorophenol indophenol. It enhances phenazine methosulfate-mediated cyclic photophosphorylation. The polypeptide, therefore, should be functionally involved on the acceptor side of photosystem I.The results obtained up-to-now on the function and localization of the polypeptides in the thylakoid membrane are summarized.


1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


1975 ◽  
Vol 33 (03) ◽  
pp. 553-563 ◽  
Author(s):  
B Østerud ◽  
K Laake ◽  
H Prydz

SummaryThe activation of factor IX purified from human plasma has been studied. Factor XIa and kallikrein separately activated factor IX to factor IXa. In both cases factor IX a had an apparent molecular weight of about 42–45000 in sodium dodecyl sul-phate-polyacrylamide disc gel electrophoresis compared with a molecular weight of about 70000 for the native factor IX. The activation by XIa required Ca2+-ions whereas Ca2+-ions did not influence the activation by kallikrein. A mixture of tissue thromboplastin and factor VII or RusselPs-viper venom alone did not activate factor IX. Trypsin activated and plasmin inactivated factor IX.


1992 ◽  
Vol 57 (10) ◽  
pp. 2151-2156 ◽  
Author(s):  
Peter Chabreček ◽  
Ladislav Šoltés ◽  
Hynek Hradec ◽  
Jiří Filip ◽  
Eduard Orviský

Two methods for the preparation of high molecular weight [3H]hyaluronic acid were investigated. In the first one, hydrogen atoms in the molecule were replaced by tritium. This isotopic substitution was performed in aqueous solution using Pd/CaCO3 as the catalyst. In the second method, the high molecular weight hyaluronic acid was alkylated with [3H]methyl bromide in liquid ammonia at a temperature of -33.5 °C. High-performance gel permeation chromatographic separation method was used for the isolation and characterization of the high molecular weight [3H]hyaluronic acid. Molecular weight parameters for the labelled biopolymers were Mw = 128 kDa, Mw/Mn = 1.88 (first method) and Mw = 268 kDa, Mw/Mn = 1.55 (second method). The high molecular weight [3H]hyaluronic acid having Mw = 268 kDa was degraded further by specific hyaluronidase. Products of the enzymatic depolymerization were observed to be identical for both, labelled and cold biopolymer. This finding indicates that the described labelling procedure using [3H]methyl bromide does not induce any major structural rearrangements in the molecule.


1977 ◽  
Vol 72 (1) ◽  
pp. 194-208 ◽  
Author(s):  
L D Hodge ◽  
P Mancini ◽  
F M Davis ◽  
P Heywood

A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS-polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000-75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed.


1988 ◽  
Vol 152 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Chie Hiraoka ◽  
Tomio Segawa

2004 ◽  
Vol 78 (1) ◽  
pp. 47-50 ◽  
Author(s):  
X.-C. Long ◽  
M. Bahgat ◽  
K. Chlichlia ◽  
A. Ruppel ◽  
Y.-L. Li

AbstractSchistosoma japonicumandS. mansoniwere tested for reactivity with an anti-inducible nitric oxide (iNOS) antibody and the distribution of iNOS was studied by immunofluorescent tests in different stages of the parasites. Reactivity was associated with the tegument in both larval schistosomes (sporocysts and cercariae) and eggs. With adult worms, the majority of the immunofluorescence was predominantly subtegumental inS. japonicumand parenchymal inS. mansoni. Fluorescence was also observed in host tissues (snails and mouse liver). In Western blots, the enzyme ofS. japonicumhad an apparent molecular weight of about 210 kDa. The possible role of worm and host iNOS in the parasite–host interrelation remains to be clarified.


1983 ◽  
Vol 50 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Paul A. Grieve ◽  
Barry J. Kitchen ◽  
John R. Dulley ◽  
John Bartley

SUMMARYAn extract ofKluyveromyces lactis416 and a β-galactosidase preparation (Maxilact 40000) contaminated with proteinase, showed similar pH profiles of caseinolytic activity. Similar modes of casein hydrolysis (κ-, > αs-, ≥ β-) were observed at pH 5·0 (the pH of Cheddar cheese), without detection of bitterness. The contaminated Maxilact preparation contained similar proteinase types to those detected in an autolysate ofK. lactis. Both the autolysate and the Maxilact preparation contained acid endopeptidase (proteinase A), serine endopeptidase (proteinase B) and serine exopeptidase (carboxypeptidase Y) activities. Some aminopeptidase activity was also detected in both preparations. There were some differences in apparent molecular weight and charge properties between proteinase A and B and carboxypeptidase Y from the 2 proteinase sources.


Sign in / Sign up

Export Citation Format

Share Document