Brief extraction with detergent induces the appearance of many plasma membrane-associated microtubules in hepatocytic cells

1984 ◽  
Vol 68 (1) ◽  
pp. 113-137
Author(s):  
D.A. Mesland ◽  
H. Spiele

In cultured H35 hepatoma cells membrane-associated cortical networks have a microtrabecular appearance as revealed by dry-cleaving. Filaments having diameters of 15 nm can be readily distinguished within these networks and have not been described previously. Microtubules are seldom observed to be part of this structure. Extraction of cells with 0.1% Saponin in microtubule-stabilizing buffer produces holes in the membrane and reorganization of the networks resulting in the loss of microtrabecular structure, the loss of 15 nm filaments and the appearance of abundant membrane-associated microtubules (about 1.25 micron per micron2 substrate-adherent membrane). These observations were confirmed by immunolabelling experiments with affinity-purified anti-tubulin immunoglobulin G. By both fluorescence microscopy and electron microscopy it was shown that labelled tubulin in the cortical networks became organized into microtubules upon treatment with detergent. By determination of the microtubule density, expressed as micron microtubule per micron2 membrane, the effects of various conditions on microtubule occurrence were determined. The Saponin-induced appearance of microtubules in the membrane-associated network could be inhibited by: 1% and 2% glutaraldehyde, 0 degrees C, millimolar Ca2+, absence of Mg2+ (subsequent reversal of inhibition by addition of Mg2+ was shown), and 20 microM-nocodazole (but not 20 microM-colchicine). In addition to Saponin, extraction with 0.1% Nonidet P-40 or 0.1% Triton X-100 also resulted in microtubule-containing cortical networks. However, 0.1% Triton N-101 was not effective, although holes were produced in the plasma membrane. These data provide evidence suggesting rapid polymerization of membrane-associated microtubule protein rather than detergent-induced displacement or collapse of existing microtubules. The arguments for this hypothesis and its implications are discussed.

Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1407
Author(s):  
Ayoub Stelate ◽  
Eva Tihlaříková ◽  
Kateřina Schwarzerová ◽  
Vilém Neděla ◽  
Jan Petrášek

Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.


Author(s):  
T. G. Sarphie ◽  
C. R. Comer ◽  
D. J. Allen

Previous ultrastructural studies have characterized surface morphology during norma cell cycles in an attempt to associate specific changes with specific metabolic processes occurring within the cell. It is now known that during the synthetic ("S") stage of the cycle, when DNA and other nuclear components are synthesized, a cel undergoes a doubling in volume that is accompanied by an increase in surface area whereby its plasma membrane is elaborated into a variety of processes originally referred to as microvilli. In addition, changes in the normal distribution of glycoproteins and polysaccharides derived from cell surfaces have been reported as depreciating after cellular transformation by RNA or DNA viruses and have been associated with the state of growth, irregardless of the rate of proliferation. More specifically, examination of the surface carbohydrate content of synchronous KB cells were shown to be markedly reduced as the cell population approached division Comparison of hamster kidney fibroblasts inhibited by vinblastin sulfate while in metaphase with those not in metaphase demonstrated an appreciable decrease in surface carbohydrate in the former.


Author(s):  
M. A. Hayat

Potassium permanganate has been successfully employed to study membranous structures such as endoplasmic reticulum, Golgi, plastids, plasma membrane and myelin sheath. Since KMnO4 is a strong oxidizing agent, deposition of manganese or its oxides account for some of the observed contrast in the lipoprotein membranes, but a good deal of it is due to the removal of background proteins either by dehydration agents or by volatalization under the electron beam. Tissues fixed with KMnO4 exhibit somewhat granular structure because of the deposition of large clusters of stain molecules. The gross arrangement of membranes can also be modified. Since the aim of a good fixation technique is to preserve satisfactorily the cell as a whole and not the best preservation of only a small part of it, a combination of a mixture of glutaraldehyde and acrolein to obtain general preservation and KMnO4 to enhance contrast was employed to fix plant embryos, green algae and fungi.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


1983 ◽  
Vol 48 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Vlastimil Kubáň ◽  
Miroslav Macka

The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the reactions of formation of the ML and ML2 complexes of both reagents with cadmium(II) ions were determined by graphical analysis and numerical interpretation of the absorbance-pH curves by the modified SQUAD-G program. Optimal conditions were proposed for the spectrophotometric determination of Cd in 10% v/v ethanol medium in the presence of 0.1% w/v Triton X-100 or 1% w/v Brij 35. BrPADAP and ClPADAP are the most sensitive spectrophotometric reagents for the determination of cadmium(II) ions (ε = 1.28-1.44 . 105 mmol-1 cm2 at 560 nm and pH 8.0-9.5) with a high colour contrast in the reaction (Δλmax ~117 nm) and a selectivity similar to that of other N-heterocyclic azodyes (PAR, PAN, etc.).


1982 ◽  
Vol 47 (10) ◽  
pp. 2676-2691 ◽  
Author(s):  
Miroslav Macka ◽  
Vlastimil Kubáň

The optical and acid-base characteristics of BrPADAP and ClPADAP were studied in mixed water-ethanol and water-DMF media and in 10% ethanol medium in the presence of cationic, anionic and nonionic tensides. The composition, optical characteristics, molar absorption coefficients and equilibrium constants of the ML and ML2 complexes with zinc(II) ions were found by graphical analysis and numerical interpretation of the absorbance curves by the modified SQUAD-G program. Optimal conditions were found for the spectrophotometric determination of Zn(II) in the presence of 0.1% Triton X-100 or 1% Brij 35 in alkaline media with pH = 6.5-10. BrPADAP and ClPADAP are the most sensitive reagents (ε = 1.3-1.6 . 105 mmol-1 cm2 at 557 and 560 nm, respectively) for the determination of zinc with high colour contrast of the reaction (Δλ = 104 nm) and selectivity similar to that for the other N-heterocyclic azodyes (PAN, PAR, etc.).


Sign in / Sign up

Export Citation Format

Share Document