Establishment of a tissue culture system for epithelial cells derived from human pancreas: a model for the study of cystic fibrosis

1987 ◽  
Vol 87 (5) ◽  
pp. 695-703
Author(s):  
A. Harris ◽  
L. Coleman

A tissue culture system for epithelial cells derived from human foetal pancreas has been established. The cultured cells show many ultrastructural features of interlobular duct cells. Immunocytochemical and histochemical evidence is presented in support of the view that these cells are ductal in origin. They are likely to be one of the few cell types that express the basic defect of cystic fibrosis in vitro. The cells may be passaged and sufficient material obtained to permit biochemical and molecular biological analysis.

1988 ◽  
Vol 90 (1) ◽  
pp. 73-77
Author(s):  
A. Harris ◽  
L. Coleman

The establishment of a tissue-culture system for epithelial cells derived from human foetal pancreas has recently been reported. Further analyses have now been made on these cells in vitro, together with parallel investigation of the distribution of different cell types within the intact foetal pancreas. Results support the view that the cultured cells are ductal in origin and nature. Pancreatic epithelial cell cultures have also been established from foetuses with cystic fibrosis.


1989 ◽  
Vol 92 (4) ◽  
pp. 687-690
Author(s):  
A. Harris ◽  
L. Coleman

A tissue culture system for epithelial cells derived from male human foetal genital ducts has been established. The cells show morphological and biochemical characteristics of ductal epithelial cells, and can be passaged and maintained in culture for considerable periods of time. These cells will provide a suitable system for investigating, by electrophysiological, biochemical and molecular biological methods, the cause of sterility in cystic fibrosis.


1996 ◽  
Vol 134 (3) ◽  
pp. 731-746 ◽  
Author(s):  
N K Haass ◽  
M A Kartenbeck ◽  
R E Leube

Certain properties of the highly specialized synaptic transmitter vesicles are shared by constitutively occurring vesicles. We and others have thus identified a cDNA in various nonneuroendocrine cell types of rat and human that is related to synaptophysin, one of the major synaptic vesicle membrane proteins, which we termed pantophysin. Here we characterize the gene structure, mRNA and protein expression, and intracellular distribution of pantophysin. Its mRNA is detected in murine cell types of nonneuroendocrine as well as of neuroendocrine origin. The intron/exon structure of the murine pantophysin gene is identical to that of synaptophysin except for the last intron that is absent in pantophysin. The encoded polypeptide of calculated mol wt 28,926 shares many sequence features with synaptophysin, most notably the four hydrophobic putative transmembrane domains, although the cytoplasmic end domains are completely different. Using antibodies against the unique carboxy terminus pantophysin can be detected by immunofluorescence microscopy in both exocrine and endocrine cells of human pancreas, and in cultured cells, colocalizing with constitutive secretory and endocytotic vesicle markers in nonneuroendocrine cells and with synaptophysin in cDNA-transfected epithelial cells. By immunoelectron microscopy, the majority of pantophysin reactivity is detected at vesicles with a diameter of < 100 nm that have a smooth surface and an electron-translucent interior. Using cell fractionation in combination with immunoisolation, these vesicles are enriched in a light fraction and shown to contain the cellular vSNARE cellubrevin and the ubiquitous SCAMPs in epithelial cells and synaptophysin in neuroendocrine or cDNA-transfected nonneuroendocrine cells and neuroendocrine tissues. Pantophysin is therefore a broadly distributed marker of small cytoplasmic transport vesicles independent of their content.


2012 ◽  
Vol 7 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Evrim Zeybek ◽  
Sertaç Önde ◽  
Zeki Kaya

AbstractThe objective of this study was to investigate development of an efficient in vitro tissue culture system for saffron (Crocus sativus L.) complete with roots and corms. In indirect organogenesis, Murashige and Skoog (MS) media with 3% (w/v) sucrose, 100 mg L−1 ascorbic acid, and the combination of 0.25 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg L−1 6-benzylaminopurine (BAP) were best for callus initiation and growth while 1.5 mg L−1 BAP was excellent for high rate of adventitious shoot formation. 1 mg L−1 indole-3-butyric acid (IBA) was more preferable for adventitious corm and root initiation as well as growth. Overall, 64% rooting and 33% corm production rates were achieved in indirect organogenesis. In direct organogenesis, MS medium supplemented with 3 % sucrose, 100 mg L−1 ascorbic acid and 1 mg L−1 BAP was optimum for shoot growth. While 1 mg L−1 IBA was best for adventitious corm formation, 2 mg L−1 IBA promoted adventitious root initiation and growth. Overall, 36% and 57% of explants had corm and contractile root, respectively. The high rates suggest that efficient tissue culture system could be achieved for mass propagation and ex situ conservation of threatened saffron genetic resources.


2011 ◽  
Vol 4 (2) ◽  
pp. 116-122
Author(s):  
Dong-Eun Kim ◽  
Keun-Hee Oh ◽  
Ji-Hye Yang ◽  
Sun-Keun Kwon ◽  
Tae-Jun Cho ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 132-132
Author(s):  
Pilar De La Puente ◽  
Feda Azab ◽  
Barbara Muz ◽  
Ravi Vij ◽  
Abdel Kareem Azab

Abstract Introduction Multiple myeloma (MM) is the second most prevalent hematological malignancy, and it remains incurable with a median survival of 3 to 5 years. Despite the introduction of several novel drugs, only 60% of the patients respond to therapy, and more than 75% of patients relapse after 5 years. The interaction of MM cells with extracellular matrix (ECM) and stromal cells in the bone marrow (BM) milieu was shown to play a crucial role in MM progression and drug resistance. Therefore, an appropriate model that demonstrates the complex interactions between MM cells and their environment and predicts the response to treatment of MM patients is warranted. The goal of this study is to produce an in vitro model of BM microenvironment in MM, which will mimic the BM in the patient and have closest prediction of cell-behavior in vivo. Methods Scaffolds for the 3D tissue-engineered BM (3DBM) were prepared by crosslinking BM supernatants from MM patients with calcium chloride in the presence of the antifibrinolytic tranexamic acid. The concentration of the different components for scaffold formation and physico-chemical properties of the scaffold were optimized. Then, we incorporated cellular components (MM cell lines and stromal cell lines) and ECM components (fibronectin) to 3DBM scaffold. We tested the effect of different MM cell densities, fibronectin concentration, and presence of different densities of stromal cells in the scaffold on the proliferation of MM cells, which was analyzed by flow cytometry. After optimization of the cellular and ECM components, we tested the sensitivity of MM cells to chemotherapeutic agents used in MM, including melphalan, bortezomib and carfilzomib, in 3DBM scaffolds with and without the presence of stromal cells. We assessed the sensitivity of MM cells to the drugs in the 3DBM scaffolds compared with the sensitivity in two-dimensional (2D) classic in vitro tissue culture system, with or without the presence of stromal cells. Results We optimized the conditions for the production of a 3DBM from BM supernatants from MM patients. We found that calcium concentration was a critical factor for the formation of the 3DBM scaffold; and 1mg/ml calcium chloride was the optimal concentration for fastest and most stable scaffold formation. Moreover, we found that the presence of an antifibrinolytic agent was essential for the stabilization of the scaffold, and 4mg/ml of tranexamic acid was sufficient to stabilize the scaffold. We optimized the conditions for seeding of the cellular components and found that MM cells proliferated in the 3DBM scaffolds better than in regular 2D tissue culture plates, in which the expansion rate over 3 days was about 5-folds in the 3DBM, compared to about 2.4-folds in 2D classic in vitro tissue culture system. In addition, we optimized the co-culture condition of MM cells with stromal cells and found that the ratio of MM/stroma of 3/1 generated the highest proliferation of MM cells in the 3DBM scaffolds. Similarly, the addition of ECM components (fibronectin) increased the proliferation of MM in the 3DBM by about 30%. In addition, we tested the effect of the 3DBM scaffold on drug resistance of MM cells. In a 2D classic in vitro tissue culture system approximately about 40-50% of the MM cells were killed using the different chemotherapies, the culture of MM cells in 3DBM decreased the sensitivity of MM cells to treatment, and addition of stromal cells to the co-culture decreased the sensitivity of MM cells to treatment in both 3D and 2D. We found that the co-culture of MM cells with stromal cells in the 3DBM treatment and using the same concentrations of the different chemotherapies killed only 5-15% of the MM cells. Conclusions We produced and characterized a 3D scaffold made from supernatant of BM aspirates from MM patients. This 3DBM is all made from patient material (autologous), no synthetic scaffolds were used, and it could represent the closest in vitro model to the BM in MM. The 3DBM induced drug resistance in MM cells, especially when it contained stromal cells. The autologous 3DBM seems to be closer to the real BM microenvironment, therefore, a better drug screening method than 2D classic in vitro tissue culture systems. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document