Effects of truncated neurofilament proteins on the endogenous intermediate filaments in transfected fibroblasts

1991 ◽  
Vol 99 (2) ◽  
pp. 335-350 ◽  
Author(s):  
S.S. Chin ◽  
P. Macioce ◽  
R.K. Liem

The expression and assembly characteristics of carboxyl- and amino-terminal deletion mutants of rat neurofilament low Mr (NF-L) and neurofilament middle Mr (NF-M) proteins were examined by transient transfection of cultured fibroblasts. Deletion of the carboxyl-terminal tail domain of either protein indicated that this region was not absolutely essential for co-assembly into the endogenous vimentin cytoskeleton. However, deletion into the alpha-helical rod domain resulted in an inability of the mutant proteins to co-assemble with vimentin into filamentous structures. Instead, the mutant proteins appeared to be assembled into unusual tubular-vesicular structures. Additionally, these latter deletions appeared to act as dominant negative mutants which induced the collapse of the endogenous vimentin cytoskeleton as well as the constitutively expressed NF-H and NF-M cytoskeletons in stably transfected cell lines. Thus, an intact alpha-helical rod domain was essential for normal IF co-assembly whereas carboxyl-terminal deletions into this region resulted in dramatic alterations of the existing type III and IV intermediate filament cytoskeletons in vivo. Deletions from the amino-terminal end into the alpha-helical rod region gave different results. With these deletions, the transfected protein was not co-assembled into filaments and the endogenous vimentin IF network was not disrupted, indicating that these deletion mutants are recessive. The dominant negative mutants may provide a novel approach to studying intermediate filament function within living cells.

2008 ◽  
Vol 190 (21) ◽  
pp. 7302-7307 ◽  
Author(s):  
Sanchaita Das ◽  
Elizabeth Stivison ◽  
Ewa Folta-Stogniew ◽  
Donald Oliver

ABSTRACT The SecA nanomotor promotes protein translocation in eubacteria by binding both protein cargo and the protein-conducting channel and by undergoing ATP-driven conformation cycles that drive this process. There are conflicting reports about whether SecA functions as a monomer or dimer during this dynamic process. Here we reexamined the roles of the amino and carboxyl termini of SecA in promoting its dimerization and functional state by examining three secA mutants and the corresponding proteins: SecAΔ8 lacking residues 2 to 8, SecAΔ11 lacking residues 2 to 11, and SecAΔ11/N95 lacking both residues 2 to 11 and the carboxyl-terminal 70 residues. We demonstrated that whether SecAΔ11 or SecAΔ11/N95 was functional for promoting cell growth depended solely on the vivo level of the protein, which appeared to govern residual dimerization. All three SecA mutant proteins were defective for promoting cell growth unless they were highly overproduced. Cell fractionation revealed that SecAΔ11 and SecAΔ11/N95 were proficient in membrane association, although the formation of integral membrane SecA was reduced. The presence of a modestly higher level of SecAΔ11/N95 in the membrane and the ability of this protein to form dimers, as detected by chemical cross-linking, were consistent with the higher level of secA expression and better growth of the SecAΔ11/N95 mutant than of the SecAΔ11 mutant. Biochemical studies showed that SecAΔ11 and SecAΔ11/N95 had identical dimerization defects, while SecAΔ8 was intermediate between these proteins and wild-type SecA in terms of dimer formation. Furthermore, both SecAΔ11 and SecAΔ11/N95 were equally defective in translocation ATPase specific activity. Our studies showed that the nonessential carboxyl-terminal 70 residues of SecA play no role in its dimerization, while increasing the truncation of the amino-terminal region of SecA from 8 to 11 residues results in increased defects in SecA dimerization and poor in vivo function unless the protein is highly overexpressed. They also clarified a number of conflicting previous reports and support the essential nature of the SecA dimer.


1996 ◽  
Vol 133 (6) ◽  
pp. 1277-1291 ◽  
Author(s):  
H V Goodson ◽  
B L Anderson ◽  
H M Warrick ◽  
L A Pon ◽  
J A Spudich

The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non-motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae.


2000 ◽  
Vol 113 (13) ◽  
pp. 2471-2483 ◽  
Author(s):  
I. Hofmann ◽  
C. Mertens ◽  
M. Brettel ◽  
V. Nimmrich ◽  
M. Schnolzer ◽  
...  

Plakophilin 1 and 2 (PKP1, PKP2) are members of the arm-repeat protein family. They are both constitutively expressed in most vertebrate cells, in two splice forms named a and b, and display a remarkable dual location: they occur in the nuclei of cells and, in epithelial cells, at the plasma membrane within the desmosomal plaques. We have shown by solid phase-binding assays that both PKP1a and PKP2a bind to intermediate filament (IF) proteins, in particular to cytokeratins (CKs) from epidermal as well as simple epithelial cells and, to some extent, to vimentin. In line with this we show that recombinant PKP1a binds strongly to IFs assembled in vitro from CKs 8/18, 5/14, vimentin or desmin and integrates them into thick (up to 120 nm in diameter) IF bundles extending for several microm. The basic amino-terminal, non-arm-repeat domain of PKP1a is necessary and sufficient for this specific interaction as shown by blot overlay and centrifugation experiments. In particular, the binding of PKP1a to IF proteins is saturable at an approximately equimolar ratio. In extracts from HaCaT cells, distinct soluble complexes containing PKP1a and desmoplakin I (DPI) have been identified by co-immunoprecipitation and sucrose density fractionation. The significance of these interactions of PKP1a with IF proteins on the one hand and desmoplakin on the other is discussed in relation to the fact that PKP1a is not bound - and does not bind - to extended IFs in vivo. We postulate that (1) effective cellular regulatory mechanisms exist that prevent plakophilins from unscheduled IF-binding, and (2) specific desmoplakin interactions with either PKP1, PKP2 or PKP3, or combinations thereof, are involved in the selective recruitment of plakophilins to the desmosomal plaques.


1987 ◽  
Vol 7 (3) ◽  
pp. 1139-1147
Author(s):  
J W Ryder ◽  
J A Gordon

We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.


1994 ◽  
Vol 213 (1) ◽  
pp. 128-142 ◽  
Author(s):  
Michael Beuttenmüller ◽  
Ming Chen ◽  
Alfred Janetzko ◽  
Siegfried Kühn ◽  
Peter Traub

1990 ◽  
Vol 111 (5) ◽  
pp. 1971-1985 ◽  
Author(s):  
J M Raats ◽  
F R Pieper ◽  
W T Vree Egberts ◽  
K N Verrijp ◽  
F C Ramaekers ◽  
...  

To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin-free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.


1994 ◽  
Vol 40 (5) ◽  
pp. 811-816 ◽  
Author(s):  
B J Pedersen ◽  
M Bonde

Abstract We purified human procollagen type I carboxyl-terminal propeptide (PICP) that had been cleaved as in vivo from procollagen. PICP in serum-free medium from cultured human fetal fibroblasts was purified by thiophilic adsorption chromatography, low-pressure gel filtration, and HPLC gel filtration. The purity and homogeneity of the protein was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino-terminal amino acid sequencing showed that the sequences of the alpha 1 and alpha 2 chains of this PICP were identical to those of the PICP produced in vivo. The monocomponent PICP thus purified was used as calibrator in a simple equilibrium-type RIA of PICP with polyclonal antibodies raised in rabbits. The measuring range is 0.15-3.75 nmol/L, and the assay detection limit is 0.03 nmol/L. The within-run and total CVs are 2% and 4%, respectively. The reference interval for the plasma concentration of PICP in healthy women of ages > 30 years is 0.36-1.44 nmol/L (geometric mean 0.72 nmol/L, n = 154).


1994 ◽  
Vol 14 (4) ◽  
pp. 2278-2290 ◽  
Author(s):  
R D Press ◽  
E P Reddy ◽  
D L Ewert

The myb oncogene encodes a DNA-binding transcriptional transactivator which can become a hematopoietic cell-transforming protein following the deletion of amino acid sequences from either its amino or carboxyl terminus. Although a number of hematopoietic tumors express terminally deleted variants of Myb, the involvement of truncated Myb in nonhematopoietic tumors has not been adequately investigated. To assess the full spectrum of Myb's oncogenic capability, a replication-competent retroviral vector (RCAMV) was used to express a full-length protein (C-Myb), an amino-terminally truncated protein (VCC- or delta N-Myb), a carboxyl-terminally truncated protein (T-Myb), or a doubly truncated protein (VCT-Myb) in vivo. These viruses were injected intravenously into 10-day chicken embryos, and the infected chicks were monitored for tumors. Approximately 4 to 8 weeks after hatching, the majority (30 of 39 [77%]) of animals infected with the T-Myb retrovirus (without 214 carboxyl-terminal residues) developed nodular muscle tumors which could be identified by both morphologic and immunohistochemical criteria as fibrosarcomas. Identically appearing tumors could also be found in the kidney of some T-Myb-infected animals. The T-Myb-induced fibrosarcomas expressed the appropriately sized T-Myb protein, contained an unaltered proviral T-myb gene, and showed clonal proviral integration sites. In comparison, no sarcomas were observed in any of the animals infected with the amino-terminally truncated (VCC- and delta N-Myb) or doubly truncated (VCT-Myb) viruses. A loss of carboxyl-terminal but not amino-terminal sequences can thus convert Myb into a potent in vivo transforming protein for nonhematopoietic mesenchymal cells. In comparison, a truncation of either or both ends of the protein can activate Myb into a hematopoietic cell-transforming protein.


1990 ◽  
Vol 10 (6) ◽  
pp. 3194-3203 ◽  
Author(s):  
A Andrianopoulos ◽  
M J Hynes

The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of five structural genes involved in the catabolism of certain amides (amdS), omega amino acids (gatA and gabA), and lactams (lamA and lamB) in the presence of omega amino acid inducers. Analysis of the amdR gene showed that it contains three small introns, heterogeneous 5' and 3' transcription sites, and multiple AUG codons prior to the major AUG initiator. The predicted amdR protein sequence has a cysteine-rich "zinc finger" DNA-binding motif at the amino-terminal end, four putative acidic transcription activation motifs in the carboxyl-terminal half, and two sequences homologous to the simian virus 40 large T antigen nuclear localization motif. These nuclear localization sequences overlap the cysteine-rich DNA-binding motif. A series of 5', 3', and internal deletions were examined in vivo for transcription activator function and showed that the amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator regions may function independently, but both are required for wild-type levels of transcription activation. A number of the amdR deletion products were found to compete with the wild-type amdR product in vivo. Development of a rapid method for the localization of amdR mutations is presented, and using this technique, we localized and sequenced the mutation in the semiconstitutive amdR6c allele. The amdR6c missense mutation occurs in the middle of the gene, and it is suggested that it results in an altered protein which activates gene expression efficiently in the absence of an inducer.


2000 ◽  
Vol 20 (9) ◽  
pp. 3015-3026 ◽  
Author(s):  
Yoshihiro Takatsu ◽  
Makoto Nakamura ◽  
Mark Stapleton ◽  
Maria C. Danos ◽  
Kunihiro Matsumoto ◽  
...  

ABSTRACT Transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-β/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated aDrosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH2-terminal kinase domain and a partially conserved COOH-terminal domain. To learn about possible endogenous roles of TAK1 during animal development, we generated transgenic flies which express dTAK1 or the mouseTAK1 (mTAK1) gene in the fly visual system. Ectopic activation of TAK1 signaling leads to a small eye phenotype, and genetic analysis reveals that this phenotype is a result of ectopically induced apoptosis. Genetic and biochemical analyses also indicate that the c-Jun amino-terminal kinase (JNK) signaling pathway is specifically activated by TAK1 signaling. Expression of a dominant negative form of dTAK during embryonic development resulted in various embryonic cuticle defects including dorsal open phenotypes. Our results strongly suggest that in Drosophila melanogaster, TAK1 functions as a MAPKKK in the JNK signaling pathway and participates in such diverse roles as control of cell shape and regulation of apoptosis.


Sign in / Sign up

Export Citation Format

Share Document