scholarly journals A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster

2003 ◽  
Vol 206 (2) ◽  
pp. 295-302 ◽  
Author(s):  
A. Sherman
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


1999 ◽  
Vol 19 (2) ◽  
pp. 1159-1170 ◽  
Author(s):  
Madeline A. Crosby ◽  
Chaya Miller ◽  
, Tamar Alon ◽  
Kellie L. Watson ◽  
C. Peter Verrijzer ◽  
...  

ABSTRACT The genes of the trithorax group (trxG) inDrosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira(mor) and its molecular characterization. morencodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.


2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.


2003 ◽  
Vol 71 (6) ◽  
pp. 3540-3550 ◽  
Author(s):  
Marc S. Dionne ◽  
Nafisa Ghori ◽  
David S. Schneider

ABSTRACT Mycobacterium marinum is a pathogenic mycobacterial species that is closely related to Mycobacterium tuberculosis and causes tuberculosis-like disease in fish and frogs. We infected the fruit fly Drosophila melanogaster with M. marinum. This bacterium caused a lethal infection in the fly, with a 50% lethal dose (LD50) of 5 CFU. Death was accompanied by widespread tissue damage. M. marinum initially proliferated inside the phagocytes of the fly; later in infection, bacteria were found both inside and outside host cells. Intracellular M. marinum blocked vacuolar acidification and failed to colocalize with dead Escherichia coli, similar to infections of mouse macrophages. M. marinum lacking the mag24 gene were less virulent, as determined both by LD50 and by death kinetics. Finally, in contrast to all other bacteria examined, mycobacteria failed to elicit the production of antimicrobial peptides in Drosophila. We believe that this system should be a useful genetically tractable model for mycobacterial infection.


2010 ◽  
Vol 72 (4) ◽  
pp. 231-234 ◽  
Author(s):  
James Billingsley ◽  
Kimberly A. Carlson

Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.


2021 ◽  
Author(s):  
Bailly Tiphaine ◽  
Philip Kohlmeier ◽  
Rampal Etienne ◽  
Bregje Wertheim ◽  
Jean-Christophe Billeter

Being part of a group facilitates cooperation between group members, but also creates competition for limited resources. This conundrum is problematic for gravid females who benefit from being in a group, but whose future offspring may struggle for access to nutrition in larger groups. Females should thus modulate their reproductive output depending on their social context. Although social-context dependent modulation of reproduction is documented in a broad range of species, its underlying mechanisms and functions are poorly understood. In the fruit fly Drosophila melanogaster, females actively attract conspecifics to lay eggs on the same resources, generating groups in which individuals may cooperate or compete. The tractability of the genetics of this species allows dissecting the mechanisms underlying physiological adaptation to their social context. Here, we show that females produce eggs increasingly faster as group size increases. By laying eggs faster in group than alone, females appear to reduce competition between offspring and increase their likelihood of survival. In addition, females in a group lay their eggs during the light phase of the day, while isolated females lay them during the night. We show that responses to the presence of others are determined by vision through the motion detection pathway and that flies from any sex, mating status or species can trigger these responses. The mechanisms of this modulation of egg-laying by group is connected to a lifting of the inhibition of light on oogenesis and egg-laying by stimulating hormonal pathways involving juvenile hormone. Because modulation of reproduction by social context is a hallmark of animals with higher levels of sociality, our findings represent a protosocial mechanism in a species considered solitary that may have been the target of selection for the evolution of more complex social systems.


Sign in / Sign up

Export Citation Format

Share Document