scholarly journals Growth and the regulation of myotomal muscle mass in teleost fish

2011 ◽  
Vol 214 (10) ◽  
pp. 1617-1628 ◽  
Author(s):  
I. A. Johnston ◽  
N. I. Bower ◽  
D. J. Macqueen
2003 ◽  
pp. 153-166
Author(s):  
Ian A. Johnston ◽  
Thomas E. Hall ◽  
Daniel A. Fernández
Keyword(s):  

Development ◽  
1996 ◽  
Vol 122 (1) ◽  
pp. 291-300 ◽  
Author(s):  
N. Itoh ◽  
T. Mima ◽  
T. Mikawa

Early in embryogenesis, precursors of the limb musculature are generated in the somite, migrate to the limb buds and undergo terminal differentiation. Although myogenic differentiation in culture is affected by several growth factors including fibroblast growth factor (FGF), it remains uncertain whether migration and differentiation of myogenic cells in vivo are directly regulated by such growth factors. To investigate the roles of FGF signaling in the regulation of myogenesis both in the somite and the limb bud, mosaic chicken embryos were generated that consist of somitic cells carrying transgenes expressing one of the following: FGF1, FGF4, the FGF receptor type-1 (FGFR1) or its dominant negative mutant (delta FGFR1). Cells infected with virus producing FGF ligand migrated into the somatopleure without differentiating into myotomal muscle, but differentiated into muscle fibers when they arrived in the limb bud. In contrast, cells overexpressing FGFR1 migrated into the limb muscle mass but remained as undifferentiated myoblasts. Cells infected with the delta FGFR1-producing virus failed to migrate to the somatopleure but were capable of differentiating into myotomal muscle within the somites. These results suggest that the FGFR-mediated FGF signaling (1) blocks terminal differentiation of myogenic cells within the somite and (2) sustains myoblast migration to limb buds from the somite, and that (3) down-regulation of FGFRs or FGFR signaling is involved in mechanisms triggering terminal differentiation of the limb muscle mass during avian embryogenesis.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 113-123
Author(s):  
Ines Schadock ◽  
Barbara G. Freitas ◽  
Irae L. Moreira ◽  
Joao A. Rincon ◽  
Marcio Nunes Correa ◽  
...  

Abstract. β-hydroxy-β-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


1978 ◽  
Vol 17 (04) ◽  
pp. 142-148
Author(s):  
U. Büll ◽  
S. Bürger ◽  
B. E. Strauer

Studies were carried out in order to determine the factors influencing myocardial 201T1 uptake. A total of 158 patients was examined with regard to both 201T1 uptake and the assessment of left ventricular and coronary function (e. g. quantitative ventriculography, coronary arteriography, coronary blood flow measurements). Moreover, 42 animal experiments (closed chest cat) were performed. The results demonstrate that:1) 201T1 uptake in the normal and hypertrophied human heart is linearly correlated with the muscle mass of the left ventricle (LVMM);2) 201T1 uptake is enhanced in the inner (subendocardial) layer and is decreased in the outer (subepicardial) layer of the left ventricular wall. The 201T1 uptake of the right ventricle is 40% lower in comparison to the left ventricle;3) the basic correlation between 201T1 uptake and LVMM is influenced by alterations of both myocardial flow and myocardial oxygen consumption; and4) inotropic interventions (isoproterenol, calcium, norepinephrine) as well as coronary dilatation (dipyridamole) may considerably augment 201T1 uptake in accordance with changes in myocardial oxygen consumption and/or myocardial flow.It is concluded that myocardial 201T1 uptake is determined by multiple factors. The major determinants have been shown to include (i) muscle mass, (ii) myocardial flow and (iii) myocardial oxygen consumption. The clinical data obtained from patient groups with normal ventricular function, with coronary artery disease, with left ventricular wall motion abnormalities and with different degree of left ventricular hypertrophy are correlated with quantitated myocardial 201T1 uptake.


2014 ◽  
Author(s):  
Andreas Lodberg ◽  
Jesper Skovhus Thomsen ◽  
Annemarie Bruel
Keyword(s):  

2019 ◽  
Author(s):  
Elizabeth Curtis ◽  
Justin Liu ◽  
Kate Ward ◽  
Karen Jameson ◽  
Zahra Raisi-Estabragh ◽  
...  

2013 ◽  
Author(s):  
Naeyer Helene De ◽  
Inge Everaert ◽  
Spaey Annelies De ◽  
Jean-Marc Kaufman ◽  
Youri Taes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document