scholarly journals Responses of a Stenohaline Freshwater Teleost (Catostomus Commersoni) to Hypersaline Exposure: I. The Dependence of Plasma pH and Bicarbonate Concentration on Electrolyte Regulation

1986 ◽  
Vol 121 (1) ◽  
pp. 77-94 ◽  
Author(s):  
P. R. H. WILKES ◽  
B. R. MCMAHON

The effects of exposure to 0.94% (300 mosmol1−1) sodium chloride on plasma electrolyte and acid-base status were examined in the freshwater stenohaline teleost Catostomus commersoni (Lacépède), the white sucker. Four days' exposure to this maximum sublethal salinity resulted in an increase in plasma concentrations of both sodium and chloride but a decrease in the Na+/Cl− ratio. Since the plasma concentrations of free amino acids and other strong ions - Ca2+, Mg2+ and K+ - remained unchanged, plasma strong ion difference (SID) decreased. Additionally, plasma pH and bicarbonate concentration decreased at constant Pcoco2 The changes in electrolyte and acid-base status that occurred after the 96 h were not appreciably altered after a further 2–3 weeks of saline exposure. The ambient calcium concentration had no influence on these results. Haemolymph non-bicarbonate buffer capacity (β) calculated as Δ[HCO3−]/ ΔpH, increased in saline-exposed fish. Consequently ΔH+, the apparent proton load, was zero despite the apparent change in acid-base status. Although β was directly proportional to the haemoglobin concentration in both control and experimental fish, this could not account for the increase in β since haemoglobin remained at control values. These results can be explained solely by the change in plasma SID and serve to illustrate the dependence of plasma acid-base status on the prevailing electrolyte characteristics, weak acid concentration and Pcoco2.

2006 ◽  
Vol 3 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Amanda Waller ◽  
Kerri Jo Smithurst ◽  
Gayle L Ecker ◽  
Ray Geor ◽  
Michael I Lindinger

AbstractMeasurement and interpretation of acid–base status are important in clinical practice and among racing jurisdictions to determine if horses have been administered alkalinizing substances for the purpose of enhancing performance. The present study used the physicochemical approach to characterize the daily variation in plasma electrolytes and acid–base state that occurs in horses in the absence of feeding and exercise. Jugular venous blood was sampled every 1–2 h from two groups (n=4 and n=5) of Standardbred horses over a 25 h period where food and exercise were withheld. One group of horses was studied in October and one in December. The time course and magnitude of circadian responses differed between the two groups, suggesting that subtle differences in environment may manifest in acid–base status. Significant daily variation occurred in plasma weak acid concentration ([Atot]) and strong ion difference ([SID]), [Cl−], [K+], [Na+] and [lactate−], which contributed to significant changes in [H+] and TCO2. The night-time period was associated with a mild acidosis, marked by increases in plasma [H+] and decreases in TCO2, compared with the morning hours. The night-time acidosis resulted from an increased plasma [Atot] due to an increased plasma protein concentration ([PP]), and a decreased [SID] due to increases in [Cl−] and decreases in [Na+]. An increased plasma [K+] during the night-time had a mild alkalotic effect. There were no differences in pCO2. It was concluded that many equine plasma electrolyte and acid–base parameters exhibit fluctuations in the absence of feeding and exercise, and it is likely that some of these changes are due to daily variation.


2019 ◽  
Vol 62 (2) ◽  
pp. 455-463 ◽  
Author(s):  
Zvonko Antunović ◽  
Ivica Marić ◽  
Željka Klir ◽  
Vatroslav Šerić ◽  
Boro Mioč ◽  
...  

Abstract. The aim of the present research was to determine the haemato-biochemical profile and blood acid–base status of Croatian spotted goats in a traditional Mediterranean production system. The 60 non-gravid female Croatian spotted goats of different ages were included in the research. They were divided into four groups of 15 goats according to age: group I – ≤1 year old; group II – 2–3 years; group III – 3–6 years; and group IV – 7–10 years. Haematological parameters were determined in whole blood, biochemical parameters in serum and acid–base status in plasma by automatic analyser. Total leukocyte number (WBC), haemoglobin (HGB) and mean corpuscular volume (MCV) in the blood were the highest, while mean haemoglobin concentration in erythrocytes (MCHCs) was the lowest in yearlings compared to other groups. Concentrations of urea, Mg, Cl, non-esterified fatty acids (NEFAs) and lactate were the highest in yearlings. Concentrations of Ca, Na, total cholesterol, high-density lipoprotein (HDL), very low-density lipoprotein (VLDL) and beta hydroxybutyrate (BHB) as well as the activity of alanine aminotransferase (ALT) were higher in older goats compared to yearlings, while the opposite was determined for the activities of creatine kinase (CK) and alkaline phosphatase (ALP). Values of pH, the strong ion difference (SID), anion gap (AG) and z values as well as the content of HCO3 and total pressure of carbon dioxide (ctCO2) were higher in older goats compared to yearlings. The results obtained may help in monitoring the health and nutritional status and improve the management of Croatian spotted goats. Based on the results of the present study, the effect of age needs to be included in the model when preparing the reference values for the haemato-biochemical profile and acid–base status of goats.


1998 ◽  
Vol 84 (5) ◽  
pp. 1740-1748 ◽  
Author(s):  
Peter Wilkes

The present study was a prospective, nonrandomized, observational examination of the relationship among hypoproteinemia and electrolyte and acid-base status in a critical care population of patients. A total of 219 arterial blood samples reviewed from 91 patients was analyzed for arterial blood gas, electrolytes, lactate, and total protein. Plasma strong-ion difference ([SID]) was calculated from [Na+] + [K+] − [Cl−] − [La−]. Total protein concentration was used to derive the total concentration of weak acid ([A]tot). [A]tot encompassed a range of 18.7 to 9.0 meq/l, whereas [SID] varied from 48.1 to 26.6 meq/l and was directly correlated with [A]tot. The decline in [SID] was primarily attributable to an increase in [Cl−]. A direct correlation was also noted between[Formula: see text] and [SID], but not between [Formula: see text] and [A]tot. The decrease in [SID] and [Formula: see text] was such that neither [H+] nor [[Formula: see text]] changed significantly with [A]tot.


2000 ◽  
Vol 78 (10) ◽  
pp. 774-780 ◽  
Author(s):  
J Pesquero ◽  
V Alfaro ◽  
L Palacios

The present study evaluated the acid-base status of anemic rats by using two approaches of acid-base analysis: one based on the base excess (BE) calculation and the other based on Stewart's physicochemical analysis. Two sets of experimental data, derived from two different methods of inducing anemia, were used: repetitive doses of phenylhydrazine (PHZ) and bleeding (BL). A significant uncompensated respiratory alkalosis was found in both groups of anemic rats. BE increased slightly, whereas strong ion difference ([SID]) and weak acid buffers ([ATOT]) remained unchanged in anemic rats. The reasons for the absence of compensation for hypocapnia and the differences in the behaviour of acid-base variables are discussed. BE increase was considered paradoxical; its calculation was affected by the experimental conditions and BE had little physiological relevance during anemia. The absence of metabolic renal compensation in anemic rats could be due to a lower pH in the kidney due to anemic hypoxia. Finally, the changes in buffer strength related to low Hb and low Pc02 might influence plasma [SID] through counteracted shifts of strong ions between erythrocytes and plasma, finally resulting in unchanged [SID] during anemia.Key words: anemia, phenylhydrazine, bleeding, base excess, strong ion difference, non-carbonic buffers.


2001 ◽  
Vol 91 (3) ◽  
pp. 1364-1371 ◽  
Author(s):  
Peter D. Constable

The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma nonvolatile buffers ( K a), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate Atot and K a values using data obtained from in vitro strong ion titration and CO2tonometry. The calculated values for Atot (24.1 mmol/l) and K a (1.05 × 10−7) were significantly ( P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (Atot = 19.0 meq/l and K a = 3.0 × 10−7). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), Pco 2, and Atot] of the strong ion approach were calculated as follows: [Formula: see text] [Formula: see text], [Formula: see text]where S is solubility of CO2 in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID+, Pco 2, and Atot on plasma pH. The calculated values for Atot and K a should facilitate application of the strong ion approach to acid-base disturbances in humans.


1981 ◽  
Vol 91 (1) ◽  
pp. 239-254
Author(s):  
P. R. H. Wilkes ◽  
R. L. Walker ◽  
D. G. McDonald ◽  
C. M. Wood

Blood gases, acid-base status, plasma ions, respiration, ventilation and cardiovascular function were measured in white suckers, using standard cannulation methods. Basic respiratory parameters under normoxia were compared to those in the active, pelagic rainbow trout and in other benthic teleosts. Sustained environmental hyperoxia (350–550 torr) increased arterial O2 (102–392 torr) and venous O2 (17–80 torr) tensions so that blood O2 transport occurred entirely via physical solution. Dorsal aortic blood pressure and heart rate fell, the latter due to an increase in vagal tone. Ventilation volume declined markedly (by 50%) due to a decrease in ventilatory stroke volume, but absolute O2 extraction rose so that O2 consumption was unaffected. While the preceding effects were stable with time, arterial and venous CO2 tensions approximately doubled within 4 h, and continued to increase gradually thereafter. This CO2 retention caused an acidosis (7.993–7.814) which was gradually compensated by an accumulation of plasma [HCO3−]. However, even after 72 h, arterial pH remained significantly depressed by 0.10 units. The gradual rise in plasma [HCO3−] was accompanied by a progressive fall in both [Na+] and [Cl−]; [K+] and [Ca2+] remained unchanged. The responses of the sucker to hyperoxia are compared to those of the rainbow trout.


1981 ◽  
Vol 92 (1) ◽  
pp. 109-124
Author(s):  
E. W. TAYLOR ◽  
MICHÈLE G. WHEATLY

1. When first removed into air, crayfish showed transient increases in heart rate (fH) and scaphognathite rate (fR) which rapidly recovered to submerged levels and were unchanged for 24 h. The rate of O2 consumption(Moo2) increased from an initially low level and was then maintained for 24 h in air at the same level as in settled submerged animals. 2. There was an initial acidosis in the haemolymph which was both respiratory and metabolic due to the accumulation of CO2 and lactate. Progressive compensation by elevation of the levels of bicarbonate buffer in the haemolymph and reduction of circulating lactate levels returned pH towards submerged levels after 24 h in air. 3. Exposure to air resulted in a marked internal hypoxia with haemolymph O2, tensions, both postbranchial Pa, oo2 and prebranchial Pv, oo2, remaining low throughout the period of exposure. The oxygen content or the haemolymph was initially reduced, with a - vOO2 content difference close to zero. Within 24 h both Ca, oo2 and Cv, OO2 had returned towards their levels in submerged animals. These changes are explained by the Bohr shift on the haemocyanin consequent upon the measured pH changes. 4. After 48 h in air, MO2 and fH were significantly reduced and ventilation became intermittent. There was a slight secondary acidosis, increase in lactic acid levels and reduction in a - vO2 content difference in the haemolymph. 5. When crayfish were returned to water after 24 h in air, MOO2, fHfR were initially elevated by disturbance and there was a period of hyperventilation. In the haemolymph there was an initial slight alkalosis, and an increase in Ca, OO2 lactic acid. All variables returned to their settled submerged levels within 8 h.


2016 ◽  
Vol 11 (2) ◽  
pp. 308-316 ◽  
Author(s):  
Kalani L. Raphael ◽  
Rachel A. Murphy ◽  
Michael G. Shlipak ◽  
Suzanne Satterfield ◽  
Hunter K. Huston ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250274
Author(s):  
Bulent Gucyetmez ◽  
Filiz Tuzuner ◽  
Hakan Korkut Atalan ◽  
Uğur Sezerman ◽  
Kaan Gucyetmez ◽  
...  

To practically determine the effect of chloride (Cl) on the acid-base status, four approaches are currently used: accepted ranges of serum Cl values; Cl corrections; the serum Cl/Na ratio; and the serum Na-Cl difference. However, these approaches are governed by different concepts. Our aim is to investigate which approach to the evaluation of the effect of Cl is the best. In this retrospective cohort study, 2529 critically ill patients who were admitted to the tertiary care unit between 2011 and 2018 were retrospectively evaluated. The effects of Cl on the acid-base status according to each evaluative approach were validated by the standard base excess (SBE) and apparent strong ion difference (SIDa). To clearly demonstrate only the effects of Cl on the acid-base status, a subgroup that included patients with normal lactate, albumin and SIG values was created. To compare approaches, kappa and a linear regression model for all patients and Bland-Altman test for a subgroup were used. In both the entire cohort and the subgroup, correlations among BECl, SIDa and SBE were stronger than those for other approaches (r = 0.94 r = 0.98 and r = 0.96 respectively). Only BECl had acceptable limits of agreement with SBE in the subgroup (bias: 0.5 mmol L-1) In the linear regression model, only BECl in all the Cl evaluation approaches was significantly related to the SBE. For the evaluation of the effect of chloride on the acid-base status, BECl is a better approach than accepted ranges of serum Cl values, Cl corrections and the Cl/Na ratio.


Author(s):  
Gavin M. Joynt ◽  
Gordon Y. S. Choi

Arterial blood gases allow the assessment of patient oxygenation, ventilation, and acid-base status. Blood gas machines directly measure pH, and the partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2) dissolved in arterial blood. Oxygenation is assessed by measuring PaO2 and arterial blood oxygen saturation (SaO2) in the context of the inspired oxygen and haemoglobin concentration, and the oxyhaemoglobin dissociation curve. Causes of arterial hypoxaemia may often be elucidated by determining the alveolar–arterial oxygen gradient. Ventilation is assessed by measuring the PaCO2 in the context of systemic acid-base balance. A rise in PaCO2 indicates alveolar hypoventilation, while a decrease indicates alveolar hyperventilation. Given the requirement to maintain a normal pH, functioning homeostatic mechanisms result in metabolic acidosis, triggering a compensatory hyperventilation, while metabolic alkalosis triggers a compensatory reduction in ventilation. Similarly, when primary alveolar hypoventilation generates a respiratory acidosis, it results in a compensatory increase in serum bicarbonate that is achieved in part by kidney bicarbonate retention. In the same way, respiratory alkalosis induces kidney bicarbonate loss. Acid-base assessment requires the integration of clinical findings and a systematic interpretation of arterial blood gas parameters. In clinical use, traditional acid-base interpretation rules based on the bicarbonate buffer system or standard base excess estimations and the interpretation of the anion gap, are substantially equivalent to the physicochemical method of Stewart, and are generally easier to use at the bedside. The Stewart method may have advantages in accurately explaining certain physiological and pathological acid base problems.


Sign in / Sign up

Export Citation Format

Share Document