Empirical Estimates of Body Drag of Large Waterfowl and Raptors

1988 ◽  
Vol 135 (1) ◽  
pp. 253-264 ◽  
Author(s):  
C. J. PENNYCUICK ◽  
HOLLIDAY H. OBRECHT ◽  
MARK R. FULLER

To whom reprint requests should be addressed. Measurements of the body frontal area of some large living waterfowl (Anatidae) and raptors (Falconiformes) were found to vary with the two-thirds power of the body mass, with no distinction between the two groups. Wind tunnel measurements on frozen bodies gave drag coefficients ranging from 0.25 to 0.39, in the Reynolds number range 145 000 to 462 000. Combining these observations with those of Prior (1984), which extended to lower Reynolds numbers, a practical rule is proposed for choosing a value of the body drag coefficient for use in performance estimates.

Author(s):  
Sandra K. S. Boetcher ◽  
Ephraim M. Sparrow

The possible impact of the presence of the strut portion of a Pitot tube on the efficacy of the tube as a velocity-measuring device has been evaluated by numerical simulation. At sufficiently low Reynolds numbers, there is a possibility that the precursive effects of the strut could alter the flow field adjacent to the static taps on the body of the Pitot tube and might even affect the impact pressure measured at the nose. The simulations were performed in dimensionless form with the Reynolds number being the only prescribed parameter, but the dimensions were taken from a short-shanked Pitot tube. Over the Reynolds number range from 1500 to 4000, a slight effect of the strut was identified. However, the variation due to the presence of the shank of the velocity measured by the Pitot tube operating in that range of Reynolds numbers was only 1.5%.


2016 ◽  
Vol 30 (30) ◽  
pp. 1650362 ◽  
Author(s):  
Shashank Khurana ◽  
Kojiro Suzuki ◽  
Ethirajan Rathakrishnan

An experimental visualization study was performed to investigate the dependence of the pressure hill height and the influence zone expanse, for flow past a spiked body with different nose configurations, over a Reynolds number range from 2278 to 4405 to establish the vortex shedding process, and applicability in low speed flow regime for effective pressure reduction. It is found that the spike reduces the radius of curvature of the approaching streamline, leading to the deflection of the streamlines towards the shoulder of the basic body, resulting in a narrow zone of the positive pressure hill at the body nose. It is also observed that the pressure hill length and the influence zone expanse decrease with the introduction of spike over the present range of Reynolds numbers. For Reynolds numbers less than 2700, spike with conical nose is found to be more efficient than the spikes with other nose shapes of the present study in reducing the positive pressure at the nose of the blunt body. For higher Reynolds numbers, greater than 2700, the size of the vortex at the junction of the spike and basic body is the largest for the spike with hemispherical nose, and emerges as a potential candidate for application in possible wind-design resistant structures.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Author(s):  
Thanesh Deva Asirvatham ◽  
Dara W. Childs ◽  
Stephen Phillips

A flat-plate tester is used to measure the friction-factor behavior for a hole-pattern-roughened surface facing a smooth surface with compressed air as the medium. Measurements of mass flow rate, static pressure drop and stagnation temperature are carried out and used to find a combined (stator + rotor) Fanning friction factor value. In addition, dynamic pressure measurements are made at four axial locations at the bottom of individual holes of the rough plate and at facing locations in the smooth plate. The description of the test rig and instrumentation, and the procedure of testing and calculation are explained in detail in Kheireddin in 2009 and Childs et al. in 2010. Three hole-pattern flat-plates with a hole-pattern diameter of 12.15 mm were tested having depths of 0.9, 1.9, and 2.9 mm. Tests were done with clearances at 0.254, 0.381, and 0.653 mm, and inlet pressures of 56, 70 and 84 bar for a range of pressure ratios, yielding a Reynolds-number range of 100,000 to 800,000. The effects of Reynolds number, clearance, inlet pressure, and hole depth on friction factor are studied. The data are compared to friction factor values of three hole-pattern flat-plates with 3.175 mm diameter holes with hole depths of 1.9, 2.6, and 3.302 mm tested in the same rig described by Kheireddin in 2009. The test program was initiated mainly to investigate a “friction-factor jump” phenomenon cited by Ha et al. in 1992 in test results from a flat-plate tester using facing hole-pattern plates where, at elevated values of Reynolds numbers, the friction factor began to increase steadily with increasing Reynolds numbers. Friction-factor jump was not observed in any of the current test cases.


1977 ◽  
Vol 82 (3) ◽  
pp. 583-604 ◽  
Author(s):  
Michael S. Kolansky ◽  
Sheldon Weinbaum ◽  
Robert Pfeffer

In Weinbaum et al. (1976) a simple new pressure hypothesis is derived which enables one to take account of the displacement interaction, the geometrical change in streamline radius of curvature and centrifugal effects in the thick viscous layers surrounding two-dimensional bluff bodies in the intermediate Reynolds number range O(1) < Re < O(102) using conventional Prandtl boundary-layer equations. The new pressure hypothesis states that the streamwise pressure gradient as a function of distance from the forward stagnation point on the displacement body is equal to the wall pressure gradient as a function of distance along the original body. This hypothesis is shown to be equivalent to stretching the streamwise body co-ordinate in conventional first-order boundary-layer theory. The present investigation shows that the same pressure hypothesis applies for the intermediate Reynolds number flow past axisymmetric bluff bodies except that the viscous term in the conventional axisymmetric boundary-layer equation must also be modified for transverse curvature effects O(δ) in the divergence of the stress tensor. The approximate solutions presented for the location of separation and the detailed surface pressure and vorticity distribution for the flow past spheres, spheroids and paraboloids of revolution at various Reynolds numbers in the range O(1) < Re < O(102) are in good agreement with available numerical Navier–Stokes solutions.


Author(s):  
Orest Shardt ◽  
J. J. Derksen ◽  
Sushanta K. Mitra

When droplets collide in a shear flow, they may coalesce or remain separate after the collision. At low Reynolds numbers, droplets coalesce when the capillary number does not exceed a critical value. We present three-dimensional simulations of droplet coalescence in a simple shear flow. We use a free-energy lattice Boltzmann method (LBM) and study the collision outcome as a function of the Reynolds and capillary numbers. We study the Reynolds number range from 0.2 to 1.4 and capillary numbers between 0.1 and 0.5. We determine the critical capillary number for the simulations (0.19) and find that it is does not depend on the Reynolds number. The simulations are compared with experiments on collisions between confined droplets in shear flow. The critical capillary number in the simulations is about a factor of 25 higher than the experimental value.


1983 ◽  
Vol 133 ◽  
pp. 265-285 ◽  
Author(s):  
Günter Schewe

Force measurements were conducted in a pressurized wind tunnel from subcritical up to transcritical Reynolds numbers 2.3 × 104[les ]Re[les ] 7.1 × 106without changing the experimental arrangement. The steady and unsteady forces were measured by means of a piezobalance, which features a high natural frequency, low interferences and a large dynamic range. In the critical Reynolds-number range, two discontinuous transitions were observed, which can be interpreted as bifurcations at two critical Reynolds numbers. In both cases, these transitions are accompanied by critical fluctuations, symmetry breaking (the occurrence of a steady lift) and hysteresis. In addition, both transitions were coupled with a drop of theCDvalue and a jump of the Strouhal number. Similar phenomena were observed in the upper transitional region between the super- and the transcritical Reynolds-number ranges. The transcritical range begins at aboutRe≈ 5 × 106, where a narrow-band spectrum is formed withSr(Re= 7.1 × 106) = 0.29.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


1991 ◽  
Vol 226 ◽  
pp. 475-496 ◽  
Author(s):  
F. T. Pinho ◽  
J. H. Whitelaw

Measurements of wall pressure, and mean and r.m.s. velocities of the confined flow about a disk of 50 % area blockage have been carried out for two Newtonian fluids and four concentrations of a shear-thinning weakly elastic polymer in aqueous solution encompassing a Reynolds-number range from 220 to 138000. The flows of Newtonian and non-Newtonian fluids were found to be increasingly dependent on Reynolds numbers below 50000, with a decrease in the length of the recirculation region and dampening of the normal Reynolds stresses. At Reynolds numbers less than 25000, the recirculation bubble lengthened and all turbulence components were suppressed with increased polymer concentration so that, at a Reynolds number of 8000, the maximum values of turbulent kinetic energy were 35 and 45% lower than that for water, with 0.2% and 0.4% solutions of the polymer. Non-Newtonian effects were found to be important in regions of low local strain rates in low-Reynolds-number flows, especially inside the recirculation bubble and close to the shear layer, and are represented by both an increase in viscous diffusion and a decrease in turbulent diffusion to, respectively, 6% and 18% of the largest term of the momentum balance with a 0.4 % polymer solution at a Reynolds number of 7700. The asymmetry and unsteadiness of the flow at Reynolds numbers between 400 and 6000 is shown to be an aerodynamic effect which increases in range and amplitude with the more concentrated polymer solutions.


Sign in / Sign up

Export Citation Format

Share Document