Warm-Up Rates and Body Temperatures in Bees: The Importance of Body Size, Thermal Regime and Phylogeny

1989 ◽  
Vol 147 (1) ◽  
pp. 303-328 ◽  
Author(s):  
G. N. Stone ◽  
P. G. Willmer

1. We assess the importance of body mass and the minimum ambient temperature at which foraging occurs in determining the warm-up rates and thoracic temperatures in flight at an air temperature of 22°C of 55 species of bee (Hymenoptera: Apoidea) from six families adapted to a variety of thermal environments. 2. To control for the effects of taxonomic differences in the relationships between these variables, we use multiple regression incorporated in the phylogenetic regression method developed by Grafen (1989). 3. The prediction made by May (1976) that for very small heterotherms warmup rate will correlate positively with body mass is confirmed when the effects of phylogeny and the thermal environment to which the bee is adapted have been controlled for. The relationship between warm-up rate and body mass within the Apoidea is thus not an extension to lower body masses of the relationship found for heterothermic vertebrates. 4. Having controlled for the effects of body mass in our analyses, we demonstrate that bees able to fly at lower ambient temperatures have higher thoracic temperatures and warm-up rates than bees adapted to wanner environments. 5. There is some suggestion that kleptoparasitic bees, being freed from the need to forage in order to provision cells, have lower warm-up rates than provisioning species. 6. The significance of these relationships in the ecology of bees is discussed in relation to studies of body temperatures and warm-up rates in bees and other insects.

2018 ◽  
Vol 3 (3) ◽  
pp. 43 ◽  
Author(s):  
Angeliki Kavvoura ◽  
Nikolaos Zaras ◽  
Angeliki-Nikoletta Stasinaki ◽  
Giannis Arnaoutis ◽  
Spyridon Methenitis ◽  
...  

The rate of force development (RFD) is vital for power athletes. Lean body mass (LBM) is considered to be an essential contributor to RFD, nevertheless high RFD may be achieved by athletes with either high or low LBM. The aim of the study was to describe the relationship between lower-body LBM and RFD, and to compare RFD in taekwondo athletes and track and field (T&F) throwers, the latter having higher LBM when compared to taekwondo athletes. Nine taekwondo athletes and nine T&F throwers were evaluated for countermovement jumping, isometric leg press and leg extension RFD, vastus lateralis (VL), and medial gastrocnemius muscle architecture and body composition. Lower body LBM was correlated with RFD 0–250 ms (r = 0.81, p = 0.016). Taekwondo athletes had lower LBM and jumping power per LBM. RFD was similar between groups at 30–50 ms, but higher for throwers at 80–250 ms. RFD adjusted for VL thickness was higher in taekwondo athletes at 30 ms, but higher in throwers at 200–250 ms. These results suggest that lower body LBM is correlated with RFD in power trained athletes. RFD adjusted for VL thickness might be more relevant to evaluate in power athletes with low LBM, while late RFD might be more relevant to evaluate in athletes with higher LBM.


1978 ◽  
Vol 73 (1) ◽  
pp. 65-83 ◽  
Author(s):  
GEORGE A. BARTHOLOMEW ◽  
BERND HEINRICH

1. Body temperatures of diurnal and nocturnal ball-rolling and non ballrolling dung beetles (in particular the genera Scarabaeus, Kheper, Gymnopleurus and Heliocopris) were studied in the field in Kenya. 2. The beetles were conspicuously endothermic during flight, ball making, and ball rolling. When at rest, their body temperatures did not differ significantly from that of their surroundings. They did not always generate high body temperatures while walking. However, they sometimes warmed up prior to walking and subsequently maintained a large difference between body and ambient temperatures. 3. The nocturnal species, S. laevistriatus, was conspicuously endothermic during ball making and ball rolling, often maintaining thoracic temperatures of 40 °C or more in an ambient temperature of 25–26 °C. In this species, the velocity of ball rolling increased linearly with body temperature from 5 cm/sec at 28 °C to 18 cm/sec at 40 °C. 4. The take-off temperatures of dung beetles increased with body mass up to 2.5g. In beetles larger than 2.5g metathoracic temperatures at take-off ranged from 40 to 44 °CC and were independent of mass. 5. Flight temperatures showed essentially the same pattern as take-off temperatures, increasing with mass up to about 42 °C at 2.5 g and being independent of mass thereafter. 6. Both flight and take-off temperatures increased with wing-loading up to about 35 N/m2, but were independent of wing loading from 35 to 65 N/m2. 7. In each of the species for which we had an adequate sample, wing loading increased linearly with body mass. Partial correlation analysis suggests that metathoracic temperature is more dependent on body mass than on wing-loading. 8. During periods of endothermy, metathoracic temperature exceeded prothoracic temperature, and abdominal temperature was lower than that of either the prothorax or metathorax. 9. Cooling rate was inversely related to body mass. The removal of elytra and wings caused the cooling rate to increase by about one-quarter. 10. Elevated body temperatures in dung beetles during terrestrial activity is probably selectively advantageous in competition for food. A high metathoracic temperature is a necessary condition for take-off and flight in the larger species. 11. Mechanisms of heat production and the evidence for thermoregulation are discussed.


2018 ◽  
Vol 35 ◽  
pp. 1-9 ◽  
Author(s):  
Nathalia Rocha Matias ◽  
Laura Verrastro

Studies on the thermal biology of fossorial reptiles that examine the relationship between the body temperature and thermal environment are needed to determine the extent of their thermoregulation abilities. This study assessed the thermal biology of Amphisbaena munoai Klappenbach, 1969 in the rocky fields of the Rio Grande do Sul and in the laboratory. The body temperature of most individuals was between 24 and 30 °C, both in the field (n = 81) and laboratory (n = 19). More individuals were caught in winter (n = 55) and spring (n = 60) than in summer (n = 25) and fall (n = 45), and in spring, individuals showed similar nocturnal and diurnal activities. In the laboratory, we found individuals with body temperatures up to 5 °C higher than the ambient temperature (n = 4), suggesting that some physiological mechanisms participate in the thermoregulation of these animals. Amphisbaena munoai is a thigmothermic species that is capable of actively regulating its temperature by selecting microhabitats such that its various activities occur within an ideal temperature range. This study is the first to evaluate the effect of seasonality and diurnal and nocturnal variations on the thermoregulation of an amphisbaenid.


1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


1989 ◽  
Vol 143 (1) ◽  
pp. 211-223 ◽  
Author(s):  
G. N. STONE ◽  
P. G. WILLMER

‘Grab and stab’ methods have become standard in the measurement of insect body temperatures. The gradient of the best-fit regression of body temperature on ambient temperature is often used as a measure of the thermoregulatory ability of a species. The temperatures recorded are commonly accepted as slight underestimates of actual values prior to capture due to passive cooling between capture and insertion of the thermocouple. Here we present laboratory experiments involving tethered flight which show that bees often warm up on cessation of flight, and that errors due to warm-up over the time interval typically associated with ‘grab and stab’ sampling may be significant. More importantly, the errors due to warm-up in two species are shown to change with ambient temperature, thus affecting the form of the relationship between ambient and body temperatures. We compare laboratory and field data to illustrate the way in which warm-up errors may exaggerate apparent thermoregulatory ability, and we urge greater caution in the interpretation of ‘grab and stab’ data.


2005 ◽  
Vol 100 (3) ◽  
pp. 883-891 ◽  
Author(s):  
Andreas Hergovich ◽  
Ulrike Willinger ◽  
Martin Arendasy

There are indications that subjects with schizotypal personality have a lower Body Mass Index. Also schizotypal personality is linked to a higher incidence of paranormal belief. In this study we examined whether low Body Mass Index is also linked to paranormal belief. In a pilot study 48 students of psychology (85.4% women) between the ages of 20 and 27 years were administered a questionnaire assessing weight, height, and paranormal belief. Analysis suggested an association between belief in paranormal phenomena and low Body Mass Index. In a follow-up study with 300 subjects and equal sex distribution, the relationship was examined under control of schizotypy. The results for Body Mass Index could not be confirmed; however, paranormal belief was heavily associated with the cognitive-perceptual component of schizotypy.


2005 ◽  
Vol 83 (6) ◽  
pp. 871-879 ◽  
Author(s):  
Craig K.R Willis ◽  
Jeffrey E Lane ◽  
Eric T Liknes ◽  
David L Swanson ◽  
R Mark Brigham

We investigated thermoregulation and energetics in female big brown bats, Eptesicus fuscus (Beauvois, 1796). We exposed bats to a range of ambient temperatures (Ta) and used open-flow respirometry to record their metabolic responses. The bats were typically thermoconforming and almost always entered torpor at Tas below the lower critical temperature Tlc of 26.7 °C. Basal metabolic rate (BMR, 16.98 ± 2.04 mL O2·h–1, mean body mass = 15.0 ± 1.4 g) and torpid metabolic rate (TMR, 0.460 ± 0.207 mL O2·h–1, mean body mass = 14.7 ± 1.3 g) were similar to values reported for other vespertilionid bats of similar size and similar to a value for E. fuscus BMR calculated from data in a previous paper. However, we found that big brown bats had a lower Tlc and lower thermal conductance at low Ta relative to those measured in the previous study. During torpor, the minimum individual body temperature (Tb) that we recorded was 1.1 °C and the bats began defending minimum Tb at Ta of approximately 0 °C. BMR of big brown bats was 76% of that predicted for bats based on the relationship between BMR and body mass. However, the Vespert ilionidae have been under-represented in previous analyses of the relationship between BMR and body mass in bats. Our data, combined with data for other vespertilionids, suggest that the family may be characterized by a lower BMR than that predicted based on data from other groups of bats.


1995 ◽  
Vol 73 (12) ◽  
pp. 2184-2191 ◽  
Author(s):  
Julio A. Lemos-Espinal ◽  
Royce E. Ballinger

We studied the thermal ecology of Sceloporus grammicus occurring in very different thermal environments at 3700 and 4400 m elevation on the Iztaccihuatl Volcano, Mexico. Despite differences in the thermal environment between study sites, individual lizards maintained similar active body temperatures (around 31.5 °C). Similar body temperatures at the two study sites probably result in differences in the cost of the thermoregulatory behavior. Lizards at the high-altitude site, an open area with few predators or competitors, presumably incur a lower thermoregulatory cost than those at the low-altitude site, which has a considerable number of shaded spots and more predators and competitors. Lizards at the low-elevation site showed a greater resistance to high temperatures than those at the high-elevation site. Physiological acclimatization to higher environmental temperatures at low elevation is likely to explain the greater heat tolerance. Freezing tolerance, thermoregulatory behavior, and low energy requirements permit S. grammicus to survive at high altitudes.


1989 ◽  
Vol 121 (4-5) ◽  
pp. 363-371 ◽  
Author(s):  
William P. Kemp ◽  
Brian Dennis

AbstractA study was conducted to examine the relationship between development rate and constant temperatures (14, 21, 24, 27, 33, 36, 40, and 45°C) for the rangeland grasshoppers Melanoplus sanguinipes (F.) and Aulocara elliotti (Thomas). Non-linear regression was used to generate estimates of lower development thresholds. The chosen model provided for a concave-shaped development rate function at temperatures above the lower threshold and required fewer parameters than previous models. Although experimental results suggested that no precise estimates of upper development thresholds could be obtained, previous field studies indicate that preferred body temperatures may be lower than ambient temperatures and probably are related in part to the thermoregulatory abilities of the two species studied. Results will be of interest to insect ecologists and those studying grasshopper biology as well as researchers and pest managers interested in predicting grasshopper development.


2018 ◽  
Vol 66 (4) ◽  
pp. 235 ◽  
Author(s):  
Luh P. E. K. Yuni ◽  
Susan M. Jones ◽  
Erik Wapstra

Body temperatures in ectotherms are strongly affected by their thermal environment. Ectotherms respond to variation in the thermal environment either by modification of behavioural thermoregulation to maintain their optimal body temperature or by shifting their optimal body temperature. In this study, the body temperatures of males of three populations of spotted snow skinks, Niveoscincus ocellatus, living along an altitudinal gradient (low, mid, and high altitude) were studied in the field and laboratory in spring, summer, and autumn, representing the full activity period of this species. The environmental variation across both sites and seasons affected their field active body temperatures. At the low and mid altitude, N. ocellatus had a higher mean body temperature than at the high altitude. Animals achieved their thermal preference at the low and mid altitude sites in all seasons. At the high altitude, however, N. ocellatus struggled to reach its preferred body temperatures, especially in autumn. The lower body temperature at the high-altitude site is likely due to limited thermal opportunity and/or an effect of avoiding the costs associated with increased intensity of basking.


Sign in / Sign up

Export Citation Format

Share Document