scholarly journals Prey Capture in Actinopterygian Fishes: A Review of Suction Feeding Motor Patterns with New Evidence from an Elopomorph Fish,Megalops atlanticus

2001 ◽  
Vol 41 (6) ◽  
pp. 1258-1265 ◽  
Author(s):  
Justin R. Grubich
1993 ◽  
Vol 180 (1) ◽  
pp. 209-227 ◽  
Author(s):  
P. C. Wainwright ◽  
R. G. Turingan

Teleost fishes typically capture prey with the oral jaws and perform most types of prey- processing behavior with the pharyngeal jaw apparatus. In these fishes, the motor patterns associated with the different stages of feeding are quite distinct, and fish can modify muscle activity patterns when feeding on different prey. We examined motor pattern variation in the queen triggerfish, Balistes vetula, a versatile predator that both captures and processes prey with its oral jaws. During feeding on three prey that differed in hardness and elusiveness, three distinct patterns of behavior could be identified on the basis of patterns of muscle activity: prey capture, buccal manipulation and blowing. During prey capture by suction feeding, the retractor arcus palatini muscle (RAP) commenced activity before the levator operculi muscle (LOP). In both buccal manipulation and blowing, the RAP began activity well after the onset of activity in the LOP. Both prey capture and buccal manipulation motor patterns varied when fish fed on different prey. When capturing hard-shelled and non-elusive prey, B. vetula did not employ suction feeding but, instead, the fish directly bit parts of its prey. The motor pattern exhibited during direct biting to capture prey was different from that during suction feeding, but was indistinguishable from the pattern seen during the repeated cycles of buccal manipulation. Harder prey elicited significantly longer bursts of activity in the jaw adductor muscles than did soft prey. In spite of the involvement of the oral jaws in virtually all stages of feeding, B. vetula shows levels of variation between patterns of behavior and types of prey characteristic of previously studied teleost fishes. Thus, the coupling of capture and processing behavior patterns in the repertoire of the oral jaws does not appear to constrain the behavioral versatility of this species.


2012 ◽  
Vol 9 (73) ◽  
pp. 1767-1773 ◽  
Author(s):  
Tyler Skorczewski ◽  
Angela Cheer ◽  
Peter C. Wainwright

Suction feeding is the most common form of prey capture across aquatic feeding vertebrates and many adaptations that enhance efficiency and performance are expected. Many suction feeders have mechanisms that allow the mouth to form a planar and near-circular opening that is believed to have beneficial hydrodynamic effects. We explore the effects of the flattened and circular mouth opening through computational fluid dynamics simulations that allow comparisons with other mouth profiles. Compared to mouths with lateral notches, we find that the planar mouth opening results in higher flow rates into the mouth and a region of highest flow that is positioned at the centre of the mouth aperture. Planar mouths provide not only for better total fluid flow rates through the mouth but also through the centre of the mouth near where suction feeders position their prey. Circular mouths are shown to provide the quickest capture times for spherical and elliptical prey because they expose the prey item to a large region of high flow. Planar and circular mouths result in higher flow velocities with peak flow located at the centre of the mouth opening and they maximize the capacity of the suction feeders to exert hydrodynamic forces on the prey.


2001 ◽  
Vol 204 (17) ◽  
pp. 3039-3051 ◽  
Author(s):  
Peter C. Wainwright ◽  
Lara A. Ferry-Graham ◽  
Thomas B. Waltzek ◽  
Andrew M. Carroll ◽  
C. Darrin Hulsey ◽  
...  

SUMMARYWe characterized prey-capture strategies in seven species of cichlid fishes representing diverse trophic habits and anticipated feeding abilities. The species examined were Petenia splendida, Cichla ocellaris, Cichlasoma minckleyi, Astronotus ocellatus, Crenicichla geayi, Heros severus (formerly Cichlasoma severum) and Cyprichromis leptosoma. Three individuals per species were filmed with video at 500Hz as they captured live adult Artemia sp. and Poecilia reticulata. For each feeding sequence, we measured the contribution of predator movement towards the prey (i.e. ram) and the movement of prey towards the predator due to suction. The use of ram differed significantly among prey types and predator species, varying as much as sixfold across predator species. High values of ram resulted in high attack velocities. Jaw protrusion contributed as much as 50% to overall ram values in some species, verifying its role in enhancing attack velocity. Suction distance did not vary significantly among species. Diversity in prey-capture behavior was therefore found to reflect differences among species in the strategy used to approach prey. Limited variation in the distance from which prey were sucked into the mouth is interpreted as the result of an expected exponential decline in water velocity with distance from the mouth of the suction-feeding predator. We propose that this relationship represents a major constraint on the distance over which suction feeding is effective for all aquatic-feeding predators.


2017 ◽  
Author(s):  
Tal Keren ◽  
Moshe Kiflawi ◽  
Christopher H Martin ◽  
Victor China ◽  
Ofri Mann ◽  
...  

AbstractThe ability to predict how multiple traits interact in determining performance is key to understanding the evolution of complex functional systems. Similar to Simpson’s adaptive landscape, which describes the fitness consequences of varying morphological traits, performance landscapes depict the performance consequences of varying morphological traits. Mapping the population’s location with respect to the topographic features of the landscape could inform us on the selective forces operating on the traits that underlie performance. Here, we used a mechanistic model derived from first principles of hydrodynamics to construct a hypothetical performance landscape for zooplankton prey capture using suction feeding. We then used the landscape to test whether a population of Chromis viridis, a coral reef zooplanktivore, is located on a performance peak or ridge based on measurements of kinematic variables recorded in-situ during undisturbed foraging. Observed trait combinations in the wild population closely matched regions of high feeding performance in the landscape, however the population was not located on a local performance peak. This sub-optimal performance was not due to constraints stemming from the observed trait correlations. The predominant directions of variation of the phenotypic traits was tangent to the ‘path of steepest ascent’ that points towards the local peak, indicating that the population does not reside on a “performance ridge”. Rather, our analysis suggests that feeding performance is constrained by stabilizing selection, possibly reflecting a balance between selection on feeding performance and mechanical or genetic constraints.


2019 ◽  
Author(s):  
Krishnamoorthy Krishnan ◽  
Asif Shahriar Nafi ◽  
Roi Gurka ◽  
Roi Holzman

AbstractFish larvae are the smallest self-sustaining vertebrates. As such, they face multiple challenge that stem from their minute size, and from the hydrodynamic regime in which they dwell. This regime of intermediate Reynolds numbers (Re) was shown to affect the swimming of larval fish and impede their ability to capture prey. Numerical simulations indicate that the flow fields external to the mouth in younger larvae result in shallower spatial gradients, limiting the force exerted on the prey. However, observations on feeding larvae suggest that failures in prey capture can also occur during prey transport, although the mechanism causing these failures is unclear. We combine high-speed videography and numerical simulations to investigate the hydrodynamic mechanisms that impede prey transport in larval fishes. Detailed kinematics of the expanding mouth during prey capture by larval Sparus aurata were used to parameterize age-specific numerical models of the flows inside the mouth. These models reveal that, for small larvae that slowly expand their mouth, not all the fluid that enters the mouth cavity is expelled through the gills, resulting in flow reversal at the mouth orifice. This efflux at the mouth orifice was highest in the younger ages, but was also high (>8%) in slow strikes produced by larger fish. Our modeling explains the observations of “in-and-out” events in larval fish, where prey enters the mouth but is not swallowed. It further highlights the importance of prey transport as an integral part in determining suction feeding success.


1983 ◽  
Vol 104 (1) ◽  
pp. 1-13 ◽  
Author(s):  
GEORGE V. LAUDER

Three experimental modifications of the feeding mechanism in the bluegill sunfish (Lepomis macrochirus Rafinesque: Centrarchidae) were performed to distinguish between two alternative hydrodynamic models of the high-speed suction-feeding process in fishes. These two models make different predictions about the change in slope of the regression line representing the relationship between buccal and opercular cavity pressures, and the three experiments provide a critical test of the models. The results from all three tests unequivocally support (1) the concept of the gill bars as a resistant element within the mouth cavity functionally dividing it into buccal and opercular cavities, (2) the negligible role of lateral movement of the gill cover (operculum) in generating negative mouth cavity pressures, and (3) the large pressure differentials previously reported between the buccal and opercular cavities. Measured pressures conform neither in relative magnitude nor waveform with pressures predicted from theoretical mathematical models. Inertial effects and accelerational flows are key aspects of high-speed suction feeding.


2013 ◽  
Vol 10 (82) ◽  
pp. 20121028 ◽  
Author(s):  
Egon Heiss ◽  
Nikolay Natchev ◽  
Michaela Gumpenberger ◽  
Anton Weissenbacher ◽  
Sam Van Wassenbergh

During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander ( Andrias davidianus ). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system.


1997 ◽  
Vol 200 (1) ◽  
pp. 101-115 ◽  
Author(s):  
A Herrel ◽  
J Cleuren ◽  
F Vree

The activity of jaw and hyolingual muscles during the entire feeding sequence is examined in the lizard Agama stellio, with special focus on the intraoral transport and swallowing stages. Correlation of electromyography (EMG) data with kinematics shows that the kinematic phases (slow opening, SO; fast opening, FO; fast closing, FC; slow closing/power stroke, SC/PS) are characterised by distinct activities in the jaw and hyolingual muscles. The SO phase is clearly the result of tongue protraction (upon protraction, the tongue is pulled against the prey and consequently the lower jaw is pushed down), whereas the FO phase is caused by activity in the jaw opener and dorsal cervical muscles. Both the FC and SC/PS phases are characterised by pronounced activity in the jaw adductor muscles. Tongue retraction is produced by activity in the hyoid and tongue retractor muscles. A quantitative analysis of time-related EMG data shows that, in accordance with the kinematic analyses, three different stages can be recognised as components of the feeding cycle: prey capture, intraoral transport and swallowing. However, analysis of intensity-related data allowed a fourth stage, crushing, to be detected. Whereas there are indications that prey capture, intraoral transport and swallowing are controlled by different motor patterns, the differences between crushing and transport are likely to be caused by feedback mechanisms. Our results show the importance of including intensity-related data in quantitative analyses of EMG recordings in order to discriminate between feeding stages. Additionally, it is shown that both the jaw and the hyolingual muscles play crucial roles during feeding. During all stages, movements of the hyolingual apparatus are an essential part of the feeding cycle. Thus, when examining lizard feeding mechanisms, the activity patterns of the hyolingual muscles should not be neglected.


Sign in / Sign up

Export Citation Format

Share Document