scholarly journals THE ACQUISITION OF FORWARD MOTILITY IN THE SPERMATOZOA OF THE POLYCHAETE ARENICOLA MARINA

1994 ◽  
Vol 195 (1) ◽  
pp. 259-280
Author(s):  
A Pacey ◽  
J Cosson ◽  
M Bentley

Sperm activation in the polychaete annelid Arenicola marina was investigated using video microscopy following the in vitro and in vivo manipulation of gametes. Careful observation of spermatozoa obtained from spawning animals indicated that they were immotile immediately after their release from the gonopores, but that they subsequently became motile following dilution in sea water. It was determined that under the pH conditions of the coelomic cavity (pH 7.3) sperm motility was suppressed, whereas upon dilution in sea water buffered at pH 8.2, motility was triggered. It is hypothesised that sperm activation, under normal conditions, occurs in two stages. The first results in the liberation of free spermatozoa from sperm morulae, allowing them to be spawned; this process is stimulated by an endocrine factor and occurs in vivo during normal spawning. The second involves the switching on of the sperm flagellar apparatus, which occurs when spermatozoa are subjected to change in extracellular pH associated with their dilution in sea water. Pharmacological agents such as ammonium chloride and quinacrine are shown to stimulate the breakdown of sperm morulae and the acquisition of sperm motility. Motile spermatozoa of A. marina, in artificial sea water buffered at pH 8.2, can remain motile for over 5 h, have a beat frequency of approximately 50 Hz and have average path velocities of between 100 and 120 µm s-1. Motile spermatozoa under these conditions can also display the phenomenon of intermittent swimming.

Author(s):  
Reyon Dcunha ◽  
Reda S. Hussein ◽  
Hanumappa Ananda ◽  
Sandhya Kumari ◽  
Satish Kumar Adiga ◽  
...  

AbstractSpermatozoon is a motile cell with a special ability to travel through the woman’s reproductive tract and fertilize an oocyte. To reach and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during both natural and assisted conception. The global trend of progressive reduction in the number and motility of healthy spermatozoa in the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we discuss various pharmacological agents and biomolecules that can enhance sperm motility in vitro and in vivo conditions to improve assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and embryologists in understanding the mechanism of factors influencing sperm motility and various management strategies to improve treatment outcomes.


2017 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Mulyati Mulyati ◽  
Suryati Suryati ◽  
Irfani Baga

The study aims to isolate, characterize, and examine probiotic bacteria's inhibitory ability against Vibrio harveyi bacteria, both in-vitro and in vivo. Methods used in the study consist of 1) An Isolation of Candidate Probiotic Bacteria, 2) An Antagonistic Test of Candidate Probiotic Bacteria in vitro, 3) An Identification of Bacteria, 4) A Pathogenicity Test of Candidate Probiotic Bacteria, 5) An Antagonistic Test of Candidate Probiotic Bacteria against V. harveyi in vivo. According to the isolation of candidate probiotic bacteria, there are 18 isolated candidate probiotic. After being tested for its inhibitory ability in vitro, there are 8 isolates with zone of inhibition as follows: isolate MM 7 from intestine (22 mm), isolate MM 6 from intestine (12 mm), isolate MM 10 from sea water (10 mm), isolate MM 5 from intestine (9 mm), isolate MM 4 from intestine (8 mm), isolate MM 3 from intestine (7 mm), isolate MM 2.2 from intestine (7 mm), isolate MM 2.1 from intestine (7 mm). Eight genera of the candidate probiotic bacteria is derived from Portunid crab, they are Staphylococcus, Streptococcus, bacillus, vibrio, Alcaligenes, Lactobacillus, micrococcus. Before proceeding the V. harveyi bacterial challenge test in vivo, three potential isolates consisting of MM6, MM7 and MM10 as the probiotic bacteria are pathogenicity-tested against V. harveyi. The survival rate of Portunid crab on pathogenicity test using MM6, MM7 and MM10 generates 91.11-100%, while the control generates 100% survival rate. Variance analysis result through post-hoc Tukey's Honest Significant Difference (HSD) test at 95% confidence interval indicates that isolate MM7 and MM10 are significantly able to increase hatchling Portunid crab's survival rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyle S. Feldman ◽  
Eunwon Kim ◽  
Michael J. Czachowski ◽  
Yijen Wu ◽  
Cecilia W. Lo ◽  
...  

AbstractRespiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.


2021 ◽  
Vol 21 ◽  
Author(s):  
Naina Kumar ◽  
Namit Kant Singh

: Male infertility is rising now-a-days and accounts for major part of infertility cases worldwide. Novel tests are being developed for better detection and management of male infertility. Though there are many tests available for diagnosing male infertility like acrosome reaction rate, hemizona assay, in vivo or in vitro sperm penetration assay, sperm DNA damage tests, but semen analysis is most commonly used initial test for male infertility. It is usually associated with failure to detect cause in many cases, as seminal composition gets affected by a number of factors and can give false reports. Furthermore, it does not give any information about defects in capacitation, sperm Zona Pellucida interaction and sperm’s ability to fertilize oocytes. This results in failure of detection and delayed management of male infertility. Hence, the present review was conducted to identify various sperm proteins that play significant role in spermatogenesis, sperm motility, sperm-Zona Pellucida interaction and fertilization. These proteins can be used in future as markers of male infertility and will aid in better detection and management of male infertility. Methodology: Search for literature was made from 1970 to 2020 from various databases like PUBMED, SCOPUS, Google Scholar on sperm proteins and their role in male fertility using keywords: “sperm protein as bio-markers”, “novel sperm proteins as markers of infertility”, “Sperm proteins essential for capacitation, sperm motility and oocyte fertilization”. Inclusion criteria: All full-length research articles, systematic reviews, meta-analysis or abstracts on sperm proteins and male infertility published in English language in peer-reviewed journals were considered.


1978 ◽  
Vol 33 (1) ◽  
pp. 235-253 ◽  
Author(s):  
J.S. Hyams ◽  
G.G. Borisy

The control of flagellar activity in the biflagellate green alga, Chlamydomonas reinhardtii was investigated by the in vitro reactivation of the isolated flagellar apparatus (the 2 flagella attached to their respective basal bodies plus accessory structures). The waveform and beat frequency of the isolated apparatus in the presence of 1 mM adenosine triphophate (ATP) were comparable to those recorded for living cells. Equimolar concentrations of adenosine diphosphate (ADP) could be substituted for ATP with little change in beat frequency and no apparent change in waveform, suggesting that the latter is converted to ATP by axonemal adenylate kinase. No reactivation occurred in adenosine monophosphate (AMP). But frequencies in cytidine, guanosine and uridine triphosphates (CTP, GTP and UTP) were approximately 10% that obtained in ATP. Reactivation was optimal over a broad pH range between pH 6.4 and pH 8.9 in both APT and ADP. Isolated flagellar apparatus could be induced to change from forward to reverse motion in vitro by manipulation of exogenous calcium ions. The 2 types of motion were directly comparable to recorded responses of living cells. Forward swimming occurred at levels of calcium below 10(−6)M, the isolated apparatus changing to backward motion above this level. Motility was inhibited at concentrations above 10(−3)M. The threshold for reversal of motion by calcium was lowered to 10(−7)M when the flagellar membranes were solubilized with detergent, indicating that the flagellar membranes are involved in the regulaion of the level of calcium within the axoneme. The reversal of motion by calcium was itself freely reversible. The relationship of these observations to the known tactic responses of Chlamydomonas is discussed.


1997 ◽  
Vol 200 (22) ◽  
pp. 2881-2892 ◽  
Author(s):  
P Leong ◽  
D Manahan

Early stages of animal development have high mass-specific rates of metabolism. The biochemical processes that establish metabolic rate and how these processes change during development are not understood. In this study, changes in Na+/K+-ATPase activity (the sodium pump) and rate of oxygen consumption were measured during embryonic and early larval development for two species of sea urchin, Strongylocentrotus purpuratus and Lytechinus pictus. Total (in vitro) Na+/K+-ATPase activity increased during development and could potentially account for up to 77 % of larval oxygen consumption in Strongylocentrotus purpuratus (pluteus stage) and 80 % in Lytechinus pictus (prism stage). The critical issue was addressed of what percentage of total enzyme activity is physiologically active in living embryos and larvae and thus what percentage of metabolism is established by the activity of the sodium pump during development. Early developmental stages of sea urchins are ideal for understanding the in vivo metabolic importance of Na+/K+-ATPase because of their small size and high permeability to radioactive tracers (86Rb+) added to sea water. A comparison of total and in vivo Na+/K+-ATPase activities revealed that approximately half of the total activity was utilized in vivo. The remainder represented a functionally active reserve that was subject to regulation, as verified by stimulation of in vivo Na+/K+-ATPase activity in the presence of the ionophore monensin. In the presence of monensin, in vivo Na+/K+-ATPase activities in embryos of S. purpuratus increased to 94 % of the maximum enzyme activity measured in vitro. Stimulation of in vivo Na+/K+-ATPase activity was also observed in the presence of dissolved alanine, presumably due to the requirement to remove the additional intracellular Na+ that was cotransported with alanine from sea water. The metabolic cost of maintaining the ionic balance was found to be high, with this process alone accounting for 40 % of the metabolic rate of sea urchin larvae (based on the measured fraction of total Na+/K+-ATPase that is physiologically active in larvae of S. purpuratus). Ontogenetic changes in pump activity and environmentally induced regulation of reserve Na+/K+-ATPase activity are important factors that determine a major proportion of the metabolic costs of sea urchin development.


1978 ◽  
Vol 75 (1) ◽  
pp. 253-263
Author(s):  
J. E. TREHERNE ◽  
Y. PICHON

Reprint requests should be addressed to Dr Treherne. Sabella is a euryhaline osmoconformer which is killed by direct transfer to 50% sea water, but can adapt to this salinity with progressive dilution of the sea water. The giant axons were adapted to progressive dilution of the bathing medium (both in vivo and in vitro) and were able to function at hyposmotic dilutions (down to 50%) sufficient to induce conduction block in unadapted axons. Hyposmotic adaptation of the giant axon involves a decrease in intracellular potassium concentration which tends to maintain a relatively constant resting potential during adaptation despite the reduction in external potassium concentration. There is no appreciable change in the intracellular sodium concentration, but the relative sodium permeability of the active membrane increases during hyposmotic adaptation. This increase partially compensates for the reduction in sodium gradient across the axon membrane, during dilution of the bathing media, by increasing the overshoot of the action potentials recorded in hyposmotically adapted axons.


2020 ◽  
Vol 10 (15) ◽  
pp. 5183
Author(s):  
Jain Nam ◽  
Kyeong Jin Kim ◽  
Geonhee Park ◽  
Byeong Goo Kim ◽  
Gwi-Hwa Jeong ◽  
...  

This study aimed to determine the effect of deep-sea water (DSW)-derived mineral waters on intestinal health, using a cell model and a dextran sulfate sodium (DSS)-induced enteritis mouse model. DSW was desalted and minerals were added to generate mineral waters that were classified as trace mineral (TM), high magnesium (HM), high magnesium low salt (HMLS), and high magnesium high calcium (HMHC), using a tabletop electrodialysis device. Caco-2 cells cocultured with Raw264.7 cells were either pre-treated or not with the four water groups, and inflammation was induced by treatment with lipopolysaccharide (LPS). Compared to LPS-treated Caco-2 cells, HMLS-cotreated cells maintained high transepithelial electrical resistance, similar to control cells. FITC-dextran permeability was lower in HMLS-treated than in other cells. In vivo, in comparison to DSS-treated mice, colon shortening was inhibited, and disease activity and colon injury were suppressed in HMLS-cotreated mice. RNA-seq of colonic tissues revealed that inflammatory gene expression was similar among the control and HMLS mice, and DSS-induced expression of inflammation-related genes such as TNF-α and NOS2 and inflammatory chemokine genes was suppressed. Our findings suggest that DSW-derived mineral water intake can help reduce colitis symptoms, and the effects may be partially regulated by magnesium and other minerals.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Patricia Kleinpeter ◽  
Christelle Remy-Ziller ◽  
Eline Winter ◽  
Murielle Gantzer ◽  
Virginie Nourtier ◽  
...  

ABSTRACTIn this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.e., Gp120-like protein, or Gp120LP). Overall, these data indicate that the M2 poxvirus family of proteins may be involved in immunosuppressive activities broader than the NF-κB inhibition already reported (R. Gedey, X. L. Jin, O. Hinthong, and J. L. Shisler, J Virol 80:8676–8685, 2006, https://doi.org/10.1128/JVI.00935-06). A Copenhagen vaccinia virus with a deletion of the nonessential M2L locus was generated and compared with its parental virus. This M2L-deleted vaccinia virus, unlike the parental virus, does not generate interference with the B7-CD28/CTLA4/PD-L1 interactions. Moreover, this deletion did not affect any key features of the virus (in vitroreplication, oncolytic activitiesin vitroandin vivo,and intratumoral expression of a transgene in an immunocompetent murine model). Altogether, these first results suggest that the M2 protein has the potential to be used as a new immunosuppressive biotherapeutic and that the M2L-deleted vaccinia virus represents an attractive new oncolytic platform with an improved immunological profile.IMPORTANCEThe vaccinia virus harbors in its genome several genes dedicated to the inhibition of the host immune response. Among them, M2L was reported to inhibit the intracellular NF-κB pathway. We report here several new putative immunosuppressive activities of M2 protein. M2 protein is secreted and binds cornerstone costimulatory molecules (CD80/CD86). M2 binding to CD80/CD86 blocks their interaction with soluble CD28/CTLA4 but also favors the soluble PD-L1-CD80 association. These findings open the way for new investigations deciphering the immune system effects of soluble M2 protein. Moreover, a vaccinia virus with a deletion of its M2L has been generated and characterized as a new oncolytic platform. The replication and oncolytic activities of the M2L-deleted vaccinia virus are indistinguishable from those of the parental virus. More investigations are needed to characterize in detail the immune response triggered against both the tumor and the virus by this M2-defective vaccinia virus.


Sign in / Sign up

Export Citation Format

Share Document