Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics

1999 ◽  
Vol 202 (23) ◽  
pp. 3431-3438 ◽  
Author(s):  
T.J. Pedley ◽  
S.J. Hill

The load against which the swimming muscles contract, during the undulatory swimming of a fish, is composed principally of hydrodynamic pressure forces and body inertia. In the past this has been analysed, through an equation for bending moments, for small-amplitude swimming, using Lighthill's elongated-body theory and a ‘vortex-ring panel method’, respectively, to compute the hydrodynamic forces. Those models are outlined in this review, and a summary is given of recent work on large-amplitude swimming that has (a) extended the bending moment equation to large amplitude, which involves the introduction of a new (though probably usually small) term, and (b) developed a large-amplitude vortex-ring panel method. The latter requires computation of the wake, which rolls up into concentrated vortex rings and filaments, and has a significant effect on the pressure on the body. Application is principally made to the saithe (Pollachius virens). The calculations confirm that the wave of muscle activation travels down the fish much more rapidly than the wave of bending.

1994 ◽  
Vol 192 (1) ◽  
pp. 129-145 ◽  
Author(s):  
J Long ◽  
M Mchenry ◽  
N Boetticher

We have developed an experimental procedure in which the in situ locomotor muscles of dead fishes can be electrically stimulated to generate swimming motions. This procedure gives the experimenter control of muscle activation and the mechanical properties of the body. Using pumpkinseed sunfish, Lepomis gibbosus, we investigated the mechanics of undulatory swimming by comparing the swimming kinematics of live sunfish with the kinematics of dead sunfish made to swim using electrical stimulation. In electrically stimulated sunfish, undulatory waves can be produced by alternating left­right contractions of either all the axial muscle or just the precaudal axial muscle. As judged by changes in swimming speed, most of the locomotor power is generated precaudally and transmitted to the caudal fin by way of the skin and axial skeleton. The form of the traveling undulatory wave ­ as measured by tail-beat amplitude, propulsive wavelength and maximal caudal curvature ­ can be modulated by experimental control of the body's passive stiffness, which is a property of the skin, connective tissue and axial skeleton.


2015 ◽  
Vol 12 (102) ◽  
pp. 20140963 ◽  
Author(s):  
Victoria J. Butler ◽  
Robyn Branicky ◽  
Eviatar Yemini ◽  
Jana F. Liewald ◽  
Alexander Gottschalk ◽  
...  

Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force–posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.


1999 ◽  
Vol 202 (23) ◽  
pp. 3397-3403 ◽  
Author(s):  
J.D. Altringham ◽  
D.J. Ellerby

Undulatory swimming in fish is powered by the segmental body musculature of the myotomes. Power generated by this muscle and the interactions between the fish and the water generate a backward-travelling wave of lateral displacement of the body and caudal fin. The body and tail push against the water, generating forward thrust. The muscle activation and strain patterns that underlie body bending and thrust generation have been described for a number of species and show considerable variation. This suggests that muscle function may also vary among species. This variation must be due in large part to the complex interactions between muscle mechanical properties, fish body form, swimming mode, swimming speed and phylogenetic relationships. Recent work in several laboratories has been directed at studying patterns of muscle power output in vitro under simulated swimming conditions. This work suggests that the way that fish generate muscle power and convert it into thrust through the body and caudal fin does indeed vary. However, despite the differences, several features appear to be common to virtually all species studied and suggest where future effort should be directed if muscle function in swimming fish is to be better understood.


1998 ◽  
Vol 353 (1371) ◽  
pp. 981-997 ◽  
Author(s):  
J.–Y. Cheng ◽  
T. J. Pedley ◽  
J. D. Altringham

When a fish swims in water, muscle contraction, controlled by the nervous system, interacts with the body tissues and the surrounding fluid to yield the observed movement pattern of the body. A continuous dynamic beam model describing the bending moment balance on the body for such an interaction during swimming has been established. In the model a linear visco–elastic assumption is made for the passive behaviour of internal tissues, skin and backbone, and the unsteady fluid force acting on the swimming body is calculated by the 3D waving plate theory. The body bending moment distribution due to the various components, in isolation and acting together, is analysed. The analysis is based on the saithe ( Pollachius virens ), a carangiform swimmer. The fluid reaction needs a bending moment of increasing amplitude towards the tail and near–standing wave behaviour on the rear–half of the body. The inertial movement of the fish results from a wave of bending moment with increasing amplitude along the body and a higher propagation speed than that of body bending. In particular, the fluid reaction, mainly designed for propulsion, can provide a considerable force to balance the local momentum change of the body and thereby reduce the power required from the muscle. The wave of passive visco–elastic bending moment, with an amplitude distribution peaking a little before the mid–point of the fish, travels with a speed close to that of body bending. The calculated muscle bending moment from the whole dynamic system has a wave speed almost the same as that observed for EMG–onset and a starting instant close to that of muscle activation, suggesting a consistent matching between the muscle activation pattern and the dynamic response of the system in steady swimming. A faster wave of muscle activation, with a variable phase relation between the strain and activation cycle, appears to be designed to fit the fluid reaction and, to a lesser extent, the body inertia, and is limited by the passive internal tissues. Higher active stress is required from caudal muscle, as predicted from experimental studies on fish muscle. In general, the active force development by muscle does not coincide with the propulsive force generation on the tail. The stiffer backbone may play a role in transmitting force and deformation to maintain and adjust the movement of the body and tail in water.


2020 ◽  
Author(s):  
Ali Chavoshian ◽  
Sophia Park

Along with the recent development of various theories of the body, Lacan’s body theory aligns with postmodern thinkers such as Michael Foucault and Maurice Merlot-Ponti, who consider body social not biological. Lacan emphasizes the body of the Real, the passive condition of the body in terms of formation, identity, and understanding. Then, this condition of body shapes further in the condition of bodies of women and laborers under patriarchy and capitalism, respectively. Lacan’s ‘not all’ position, which comes from the logical square, allows women to question patriarchy’s system and alternatives of sexual identities. Lacan’s approach to feminine sexuality can be applied to women’s spirituality, emphasizing multiple narratives of body and sexual identities, including gender roles. In the social discernment and analysis in the liberation theology, we can employ the capitalist discourse, which provides a tool to understand how people are manipulated by late capitalist society, not knowing it. Lacan’s theory of ‘a body without a head’ reflects the current condition of the human body, which manifests lack, yet including some possibilities for transforming society.


1976 ◽  
Vol 75 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Joseph B. Keller ◽  
Sol I. Rubinow

Slow flow of a viscous incompressible fluid past a slender body of circular crosssection is treated by the method of matched asymptotic expansions. The main result is an integral equation for the force per unit length exerted on the body by the fluid. The novelty is that the body is permitted to twist and dilate in addition to undergoing the translating, bending and stretching, which have been considered by others. The method of derivation is relatively simple, and the resulting integral equation does not involve the limiting processes which occur in the previous work.


1999 ◽  
Vol 202 (16) ◽  
pp. 2127-2138 ◽  
Author(s):  
T. Knower ◽  
R.E. Shadwick ◽  
S.L. Katz ◽  
J.B. Graham ◽  
C.S. Wardle

To learn about muscle function in two species of tuna (yellowfin Thunnus albacares and skipjack Katsuwonus pelamis), a series of electromyogram (EMG) electrodes was implanted down the length of the body in the internal red (aerobic) muscle. Additionally, a buckle force transducer was fitted around the deep caudal tendons on the same side of the peduncle as the electrodes. Recordings of muscle activity and caudal tendon forces were made while the fish swam over a range of steady, sustainable cruising speeds in a large water tunnel treadmill. In both species, the onset of red muscle activation proceeds sequentially in a rostro-caudal direction, while the offset (or deactivation) is nearly simultaneous at all sites, so that EMG burst duration decreases towards the tail. Muscle duty cycle at each location remains a constant proportion of the tailbeat period (T), independent of swimming speed, and peak force is registered in the tail tendons just as all ipsilateral muscle deactivates. Mean duty cycles in skipjack are longer than those in yellowfin. In yellowfin red muscle, there is complete segregation of contralateral activity, while in skipjack there is slight overlap. In both species, all internal red muscle on one side is active simultaneously for part of each cycle, lasting 0.18T in yellowfin and 0.11T in skipjack. (Across the distance encompassing the majority of the red muscle mass, 0.35-0.65L, where L is fork length, the duration is 0.25T in both species.) When red muscle activation patterns were compared across a variety of fish species, it became apparent that the EMG patterns grade in a progression that parallels the kinematic spectrum of swimming modes from anguilliform to thunniform. The tuna EMG pattern, underlying the thunniform swimming mode, culminates this progression, exhibiting an activation pattern at the extreme opposite end of the spectrum from the anguilliform mode.


Author(s):  
Rahul Subramanian ◽  
Naga Venkata Rakesh ◽  
Robert F. Beck

Accurate prediction of the roll response is of significant practical relevance not only for ships but also ship type offshore structures such as FPSOs, FLNGs and FSRUs. This paper presents a new body-exact scheme that is introduced into a nonlinear direct time-domain based strip theory formulation to study the roll response of a vessel subjected to moderately large amplitude incident waves. The free surface boundary conditions are transferred onto a representative incident wave surface at each station. The body boundary condition is satisfied on the instantaneous wetted surface of the body below this surface. This new scheme allows capturing nonlinear higher order fluid loads arising from the radiated and wave diffraction components. The Froude-Krylov and hydrostatic loads are computed on the intersection surface of the exact body position and incident wave field. The key advantage of the methodology is that it improves prediction of nonlinear hydrodynamic loads while keeping the additional computational cost small. Physical model tests have been carried out to validate the computational model. Fairly good agreement is seen. Comparisons of the force components with fully linear and body-nonlinear models help in bringing out the improvements due to the new formulation.


2021 ◽  
Vol VI (I) ◽  
pp. 79-85
Author(s):  
Ayesha Khaliq ◽  
Mamona Yasmin Khan ◽  
Rabia Hayat

The female body is more than often used as a site to perpetuate violence and oppress women in patriarchal societies. The current study aims to explore how patriarchal oppression targets the female body and how it enforces women to become subalterns having no voice in the selected fictional work, Half the Sky by Kristoff and WuDunn. For this purpose, Simone De Beauvoir's The Second Sex (1949) and Bryan Turner's The Body theory (1984) are used as theoretical frameworks to explore the selected novel. The research is descriptive qualitative, and placed within the interpretive paradigm. The data for the present study is in the form of textual paragraphs, which is taken from the selected novel and is collected through the purposive sampling technique. The study argues on women's oppression and violence. The findings of the study revealed that the dominancy of male counterpart in every field of life is the basic reason for women oppression which leads to the women being subalterns.


1998 ◽  
Vol 201 (10) ◽  
pp. 1659-1671 ◽  
Author(s):  
L Hammond ◽  
J D Altringham ◽  
C S Wardle

Strain and activity patterns were determined during slow steady swimming (tailbeat frequency 1.5-2.5 Hz) at three locations on the body in the slow myotomal muscle of rainbow trout Oncorhynchus mykiss using sonomicrometry and electromyography. Strain was independent of tailbeat frequency over the range studied and increased significantly from +/-3.3 % l0 at 0.35BL to +/-6 % at 0.65BL, where l0 is muscle resting length and BL is total body length. Muscle activation occurred significantly later in the strain cycle at 0.35BL (phase shift 59 degrees) than at 0.65BL (30 degrees), and the duration of activity was significantly longer (211 degrees at 0.35BL and 181 degrees at 0.65BL). These results differ from those of previous studies. The results have been used to simulate in vivo activity in isolated muscle preparations using the work loop technique. Preparations from all three locations generated net positive power under in vivo conditions, but the negative power component increased from head to tail. Both kinematically, and in the way its muscle functions to generate hydrodynamic thrust, the rainbow trout appears to be intermediate between anguilliform swimmers such as the eel, which generate thrust along their entire body length, and carangiform fish (e.g. saithe Pollachius virens), which generate thrust primarily at the tail blade.


Sign in / Sign up

Export Citation Format

Share Document