Effect of wind and solar radiation on metabolic heat production in a small desert rodent, Spermophilus tereticaudus

2000 ◽  
Vol 203 (5) ◽  
pp. 879-888 ◽  
Author(s):  
K.M. Wooden ◽  
G.E. Walsberg

To understand better how complex interactions between environmental variables affect the energy balance of small diurnal animals, we studied the effects of the absence and presence of 950 W m(−)(2) simulated solar radiation combined with wind speeds ranging from 0. 25 to 1.00 m s(−)(1) on the metabolic rate and body temperature of the round-tailed ground squirrel Spermophilus tereticaudus. As wind speed increased from 0.25 to 1.00 m s(−)(1), metabolic heat production increased by 0.94 W in the absence of solar radiation and by 0.98 W in the presence of 950 W m(−)(2) simulated solar radiation. Exposure to simulated solar radiation reduced metabolic heat production by 0.68 W at a wind speed of 0.25 m s(−)(1), by 0.64 W at 0.50 m s(−)(1) and by 0.64 W at 1.00 m s(−)(1). Body temperature was significantly affected by environmental conditions, ranging from 32. 5 degrees C at a wind speed of 1.0 m s(−)(1) and no irradiance to 35. 6 degrees C at a wind speed of 0.50 m s(−)(1) with 950 W m(−)(2)short-wave irradiance. In addition, several unusual findings resulted from this study. The coat of S. tereticaudus is very sparse, and the observed heat transfer of 5.68+/−0.37 W m(−)(2) degrees C(−)(1) (mean +/− s.e.m., N=11) is much higher than expected from either allometric equations or comparative studies with other rodents of similar mass. Solar heat gain was remarkably low, equalling only 10 % of intercepted radiation and suggesting a remarkably high regional thermal resistance at the tissue level. Animals remained normally active and alert at body temperatures as low as 32.5 degrees C. These findings suggest a unique combination of adaptations that allow S. tereticaudus to exploit a harsh desert environment.

2000 ◽  
Vol 203 (4) ◽  
pp. 803-811 ◽  
Author(s):  
B.O. Wolf ◽  
K.M. Wooden ◽  
G.E. Walsberg

The energy budgets of small endotherms are profoundly affected by characteristics of the physical environment such as wind speed, air temperature and solar radiation. Among these, solar radiation represents a potentially very large heat load to small animals and may have an important influence on their thermoregulatory metabolism and heat balance. In this investigation, we examined the interactive effects of wind speed and irradiance on body temperature, thermoregulatory metabolism and heat balance in the white-crowned sparrow (Zonotrichia leucophrys gambelii). We measured changes in metabolic heat production by exposing birds to different wind speeds (0.25, 0.5, 1.0 and 2.0 m s(−1)) and irradiance combinations (<3 W m(−2) and 936+/−11 W m(−2); mean +/− s.d.) at an air temperature of 10 degrees C. Body temperature was not affected by wind speed, but was significantly higher in animals not exposed to simulated solar radiation compared with those exposed at most wind speeds. In the absence of solar radiation, metabolic heat production was strongly affected by wind speed and increased by 30 % from 122 to 159 W m(−2) as wind speed increased from 0.25 to 2.0 m s(−1). Metabolic heat production was even more strongly influenced by wind speed in the presence of simulated solar radiation and increased by 51% from 94 to 142 W m(−2) as wind speed increased from 0.25 to 2. 0 m s(−1). Solar heat gain was negatively correlated with wind speed and declined from 28 to 12 W m(−2) as wind speed increased from 0.25 to 2.0 m s(−1) and, at its maximum, equaled 11% of the radiation intercepted by the animal. The overall thermal impact of the various wind speed and irradiance combinations on the animal's heat balance was examined for each treatment. Under cold conditions, with no solar radiation present, an increase in wind speed from 0.25 to 2.0 m s(−1) was equivalent to a decrease in chamber air temperature of 12.7 degrees C. With simulated solar radiation present, a similar increase in wind speed was equivalent to a decrease in chamber air temperature of 16 degrees C. Overall, shifting environmental conditions from a wind speed of 0.25 m s(−1) and irradiance of 936 W m(−2) to a wind speed of 2.0 m s(−1) with no short-wave radiation present was equivalent to decreasing chamber air temperature by approximately 20 degrees C. The sensitivity to changes in the convective environment, combined with the complex effects of changes in irradiance levels revealed by re-analyzing data published previously, significantly complicates the task of estimating the heat balance of animals in nature.


1995 ◽  
Vol 198 (7) ◽  
pp. 1499-1507 ◽  
Author(s):  
G E Walsberg ◽  
B O Wolf

We report the first empirical data describing the interactive effects of simultaneous changes in irradiance and convection on energy expenditure by live mammals. Whole-animal rates of solar heat gain and convective heat loss were measured for representatives of two ground squirrel species, Spermophilus lateralis and Spermophilus saturatus, that contrast in coloration. Radiative heat gain was quantified as the decrease in metabolic heat production caused by the animal's exposure to simulated solar radiation. Changes in convective heat loss were quantified as the variation in metabolic heat production caused by changes in wind speed. For both species, exposure to 780 W m-2 of simulated solar radiation significantly reduced metabolic heat production at all wind speeds measured. Reductions were greatest at lower wind speeds, reaching 42% in S. lateralis and 29% in S. saturatus. Solar heat gain, expressed per unit body surface area, did not differ significantly between the two species. This heat gain equalled 14-21% of the radiant energy intercepted by S. lateralis and 18-22% of that intercepted by S. saturatus. Body resistance, an index of animal insulation, declined by only 10% in S. saturatus and 13% in S. lateralis as wind speed increased from 0.5 to 4.0 ms-1. These data demonstrate that solar heat gain can be essentially constant, despite marked differences in animal coloration, and that variable exposure to wind and sunlight can have important consequences for both thermoregulatory stress experienced by animals and their patterns of energy allocation.


1997 ◽  
Vol 200 (15) ◽  
pp. 2115-2121 ◽  
Author(s):  
G E Walsberg ◽  
R L Tracy ◽  
T C Hoffman

Endotherms exposed to air temperatures below thermal neutrality reduce their metabolic heat production when exposed to sunlight. The physiological effects of this additional source of heat gain from the environment usually are assumed to be proportional to the intensity of irradiance if other factors are held constant. We test this assumption by measuring changes in metabolic heat production produced by exposing a small mammal, the Siberian hamster (Phodopus sungorus) to four intensities of simulated solar radiation (0 W m-2, 317 W m-2, 634 W m-2 and 950 W m-2). In the absence of solar radiation, metabolic heat production is inversely correlated with air temperature over the measured range of 3-27 degrees C. The respiratory quotient varies significantly with ambient temperature, indicating that the catabolic substrate and the thermal equivalent of oxygen consumed or carbon dioxide produced also vary with temperature. The depression of metabolic heat production resulting from exposure to simulated solar radiation is not simply a multiple of the intensity of irradiance. Rather, metabolic responses to higher levels of irradiance are blunted by 14-29% compared with those expected on the basis of the response to less intense irradiance. Because changes in irradiance levels do not have simple linear effects upon the animal's metabolic heat production, even in a simplified situation, significant errors may accumulate in biophysical analyses in which an animal's responses to a restricted set of radiative conditions are measured and the results are extrapolated to a wider range observed in nature.


1998 ◽  
Vol 85 (1) ◽  
pp. 204-209 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
Michael N. Sawka ◽  
Kent B. Pandolf

This study examined whether serial cold-water immersions over a 10-h period would lead to fatigue of shivering and vasoconstriction. Eight men were immersed (2 h) in 20°C water three times (0700, 1100, and 1500) in 1 day (Repeat). This trial was compared with single immersions (Control) conducted at the same times of day. Before Repeat exposures at 1100 and 1500, rewarming was employed to standardize initial rectal temperature. The following observations were made in the Repeat relative to the Control trial: 1) rectal temperature was lower and heat debt was higher ( P < 0.05) at 1100; 2) metabolic heat production was lower ( P < 0.05) at 1100 and 1500; 3) subjects perceived the Repeat trial as warmer at 1100. These data suggest that repeated cold exposures may impair the ability to maintain normal body temperature because of a blunting of metabolic heat production, perhaps reflecting a fatigue mechanism. An alternative explanation is that shivering habituation develops rapidly during serially repeated cold exposures.


2018 ◽  
Vol 1 (96) ◽  
Author(s):  
Rima Solianik ◽  
Albertas Skurvydas ◽  
Marius Brazaitis

Background. There is evidence of greater whole body cooling induced unpredictable task switching and memory deterioration in men than in women; however, it is not known how whole body cooling affects attention stability. This study aimed at identifying if there are any gender-specific differences in the effect of cold water immersion-induced stress on attention stability.Methods. Thirteen men and thirteen women were exposed to acute cold stress by immersion in 14°C water until rectal temperature reached 35.5°C or for a maximum of 170 min. Thermoregulatory response (i.e. changes of body temperature and metabolic heat production) and attention stability response (i.e. Schulte table (less cognitively demanding task) and Schulte-Gorbov table (more cognitively demanding task)) were monitored.Results. During cold stress, body temperature variables decreased (p < .05) and did not differ between genders. Metabolic  heat  production  was  greater  (p  <  .05)  in  men  than  in  women.  Body  cooling  significantly  increased  (p < .05) the duration of Schulte table performance for both genders, whereas an increase (p < .05) of the duration of Schulte-Gorbov table performance was observed only in men. Conclusion. This is the first study to find the evidence supporting the idea of gender-specific and task-dependent attention stability response after whole body cooling. Whole body cooling induced stress had similar influence on simple attention stability task in men and women, whereas more complex task was adversely affected only in men. This greater men’s decrement of complex task performance can be associated with their greater catecholamines-induced metabolic heat production.Keywords: men, women, cognitive performance, metabolic heat production, shivering.


1976 ◽  
Vol 24 (1) ◽  
pp. 39 ◽  
Author(s):  
WW Weathers ◽  
DC Schoenbaechler

The standard metabolic rate of budgerygahs, determined during October and November, was 30% lower at night (1.96 ml O2 g-1 h-1) than during the day (2.55 ml O2 g-1h-1 ). The zone of thermal neutrality extended from 29 to 41�C. At ambient temperatures (Ta) below 29�C, oxygen consumption [V(02)] increased with decreasing Ta according to the relation V(02) (ml O2 g-1 h-1) = 5.65 - 0.127Ta. At Ta's between 0 and 16�C, body temperature (Tb) averaged 37.7�C (which is low by avian standards) and was independent of Ta. Above 20�C, Tb increased with increasing Ta, and within the zone of thermal neutrality Tb increased by approximately 4�C. The relation between V(O2) and Tb within the zone of thermal neutrality is described by the equation V(O2 = 6.29 - 0.105 Tb. This ability to decrease metabolic heat production while Tb rises could contribute to the water economy of budgerygahs. At moderate Ta's the rate of evaporative water loss of budgerygahs is only 60% that predicted for a 31 g bird. At Ta's below 14�C budgerygahs can balance evaporative water loss with metabolic water production. At 45�C Tb was between 1.0 and 5.0�C below Ta, and evaporative cooling accounted for up to 156% of metabolic heat production. At high Ta's budgerygahs appear to augment evaporation by lingual flutter.


1997 ◽  
Vol 272 (6) ◽  
pp. R1691-R1697 ◽  
Author(s):  
M. L. Mathai ◽  
H. Hjelmqvist ◽  
R. Keil ◽  
R. Gerstberger

The influence of systemic nitric oxide (NO) donor infusion and NO synthase inhibition on major thermoregulatory mechanisms was investigated under thermoneutral conditions (24 degrees C) in the conscious rabbit. Both low (25 nmol.min-1.kg-1) and high-dose (75 nmol.min-1.kg-1) infusion of the NO donors 3-morpholinosydnonimine-hydrochloride and S-nitroso-N-acetylpenicillamine augmented respiratory heat dissipation due to raised respiratory frequency (RF) and evaporative water loss (REWL). At the higher dose of NO donor, RF and REWL increased (from 107 +/- 16 to 156 +/- 19 breaths/min and from 7.12 +/- 0.97 to 11.29 +/- 1.29 mg.min-1.kg-1; P < 0.05), and, combined with a moderate rise in cutaneous heat dissipation (ear skin temperature increased from 29.03 +/- 1.76 to 33.29 +/- 2.71 degrees C; P < 0.05), deep body temperature was slightly reduced (-0.1 degrees C, P > 0.05) without a change in metabolic heat production. In contrast, blockade of endogenous NO synthesis induced a sustained rise in body temperature (0.2 degrees C, P < 0.05), concomitant with a reduction in both RF and REWL (from 131 +/- 11 to 94 +/- 12 breaths/min and from 10.86 +/- 1.14 to 8.70 +/- 0.88 mg.min-1.kg-1, P < 0.05), whereas metabolic heat production decreased slightly and cutaneous heat dissipation was minimally altered. The data indicate that, under thermoneutral conditions, systemically applied NO primarily influences body temperature in the conscious rabbit by modulating the rate of respiratory heat dissipation, whereas the roles of cutaneous heat dissipation and metabolic heat production are relatively minor.


Sign in / Sign up

Export Citation Format

Share Document