Regulation of body temperature in the Budherygah, Melopsittacus undulatus

1976 ◽  
Vol 24 (1) ◽  
pp. 39 ◽  
Author(s):  
WW Weathers ◽  
DC Schoenbaechler

The standard metabolic rate of budgerygahs, determined during October and November, was 30% lower at night (1.96 ml O2 g-1 h-1) than during the day (2.55 ml O2 g-1h-1 ). The zone of thermal neutrality extended from 29 to 41�C. At ambient temperatures (Ta) below 29�C, oxygen consumption [V(02)] increased with decreasing Ta according to the relation V(02) (ml O2 g-1 h-1) = 5.65 - 0.127Ta. At Ta's between 0 and 16�C, body temperature (Tb) averaged 37.7�C (which is low by avian standards) and was independent of Ta. Above 20�C, Tb increased with increasing Ta, and within the zone of thermal neutrality Tb increased by approximately 4�C. The relation between V(O2) and Tb within the zone of thermal neutrality is described by the equation V(O2 = 6.29 - 0.105 Tb. This ability to decrease metabolic heat production while Tb rises could contribute to the water economy of budgerygahs. At moderate Ta's the rate of evaporative water loss of budgerygahs is only 60% that predicted for a 31 g bird. At Ta's below 14�C budgerygahs can balance evaporative water loss with metabolic water production. At 45�C Tb was between 1.0 and 5.0�C below Ta, and evaporative cooling accounted for up to 156% of metabolic heat production. At high Ta's budgerygahs appear to augment evaporation by lingual flutter.

The Condor ◽  
2007 ◽  
Vol 109 (2) ◽  
pp. 446-451 ◽  
Author(s):  
Sheldon J. Cooper ◽  
Sarah Sonsthagen

AbstractWe measured metabolic heat production (H ˙m) of perching and foraging Black-capped Chickadees (Poecile atricapillus) to determine if the heat produced during foraging activity, or exercise thermogenesis, could replace thermoregulatory heat production requirements. H ˙m and activity of chickadees in winter were measured at ambient temperatures (Ta) ranging from −11.5° to 15.5°C. Mean activity amplitude recorded with an activity detector was significantly higher in foraging birds than perching birds. H ˙m did not vary significantly between perching and foraging birds, indicating that heat produced during foraging does substitute for heat produced by shivering for thermoregulation. Evaporative water loss and dry thermal conductance did not vary significantly between perching and foraging chickadees. These results suggest that heat produced from locomotor muscles during foraging activity substitutes for thermoregulatory requirements in glean-and-hang foraging species, such as chickadees, as well as in ground-foraging birds.


1986 ◽  
Vol 34 (1) ◽  
pp. 35 ◽  
Author(s):  
RV Baudinette ◽  
P Gill ◽  
M O'driscoll

Rates of oxygen consumption and means of augmenting the resultant heat production were studied in the little penguin, Eudyptula minor. Metabolic rates were lower than those predicted for a 1-kg bird, but shivering and an energy response to feeding were both present. The latter effect was independent of ambient temperatures between 2 deg and 22 deg C. The birds have limited ability to dissipate heat by evaporative water loss. About 40% of the total heat production was the maximum amount lost by this route. Cooling of expired respiratory gas provided an effective saving of heat and water. Moulting resulted in a 1.5-fold increase in metabolic rate but rates of evaporative water loss were reduced. The increase in heat production is correlated with increased thermal conductance across the body surface, as new feathers are synthesized, but body temperature is the same as in non-moulting penguins. The results suggest that increased heat loss when the birds are in water might be replaced by calorigenesis associated with the response to feeding, and by shivering, as well as by activity.


1986 ◽  
Vol 34 (1) ◽  
pp. 25 ◽  
Author(s):  
JR Roberts ◽  
RV Baudinette

Stubble quail occur in more arid areas of Australia than king quail; however, the rates of metabolism and the ability to regulate body temperature in response to varying ambient temperature are similar in both birds, and resemble those of other quail species. At high ambient temperatures, rates of heat loss mediated by evaporative water loss are lower than those previously reported for more xerophilic species. Overall rates of water turnover and evaporative water loss at lower ambient temperatures are at the lower end of the range predicted for birds.


1976 ◽  
Vol 86 (1) ◽  
pp. 35-43 ◽  
Author(s):  
B. H. Misson

SUMMARYMeasurements of O2 consumption (Vo2), CO2 production (VCO2) evaporative water loss and rectal temperature (Tr) have been made and metabolic heat production (H), evaporative heat loss (—E) and respiratory quotient (RQ) calculated with individual and groups of 1-day-old chicks at constant ambient temperatures (To) in the range 20—43 °C and 80 or 20% relative humidity (R.H.).Minimal metabolism (10·7 kJ/kgJ/h) occurred at 35 °C.One-day-old chicks act as heterotherms outside the zone of minimal metabolism since neither H nor —E are sufficiently developed mechanisms to maintain homeothermy.Huddling allows chicks to maintain a higher TT at a lower H per unit metabolic body size.Reducing E.H. from 80 to 20% raised the upper temperature survival limit (UTSL) from 41·5 to 43 °C.Panting was initiated when Ta = 38 °C and Tr was between 39·5 and 39·9 °C.


1997 ◽  
Vol 272 (6) ◽  
pp. R1691-R1697 ◽  
Author(s):  
M. L. Mathai ◽  
H. Hjelmqvist ◽  
R. Keil ◽  
R. Gerstberger

The influence of systemic nitric oxide (NO) donor infusion and NO synthase inhibition on major thermoregulatory mechanisms was investigated under thermoneutral conditions (24 degrees C) in the conscious rabbit. Both low (25 nmol.min-1.kg-1) and high-dose (75 nmol.min-1.kg-1) infusion of the NO donors 3-morpholinosydnonimine-hydrochloride and S-nitroso-N-acetylpenicillamine augmented respiratory heat dissipation due to raised respiratory frequency (RF) and evaporative water loss (REWL). At the higher dose of NO donor, RF and REWL increased (from 107 +/- 16 to 156 +/- 19 breaths/min and from 7.12 +/- 0.97 to 11.29 +/- 1.29 mg.min-1.kg-1; P < 0.05), and, combined with a moderate rise in cutaneous heat dissipation (ear skin temperature increased from 29.03 +/- 1.76 to 33.29 +/- 2.71 degrees C; P < 0.05), deep body temperature was slightly reduced (-0.1 degrees C, P > 0.05) without a change in metabolic heat production. In contrast, blockade of endogenous NO synthesis induced a sustained rise in body temperature (0.2 degrees C, P < 0.05), concomitant with a reduction in both RF and REWL (from 131 +/- 11 to 94 +/- 12 breaths/min and from 10.86 +/- 1.14 to 8.70 +/- 0.88 mg.min-1.kg-1, P < 0.05), whereas metabolic heat production decreased slightly and cutaneous heat dissipation was minimally altered. The data indicate that, under thermoneutral conditions, systemically applied NO primarily influences body temperature in the conscious rabbit by modulating the rate of respiratory heat dissipation, whereas the roles of cutaneous heat dissipation and metabolic heat production are relatively minor.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7885 ◽  
Author(s):  
Mohlamatsane Mokhatla ◽  
John Measey ◽  
Ben Smit

Temperature and water availability are two of the most important variables affecting all aspects of an anuran’s key physiological processes such as body temperature (Tb), evaporative water loss (EWL) and standard metabolic rate (SMR). Since anurans display pronounced sexual dimorphism, evidence suggests that these processes are further influenced by other factors such as vapour pressure deficit (VPD), sex and body mass (Mb). However, a limited number of studies have tested the generality of these results across a wide range of ecologically relevant ambient temperatures (Ta), while taking habitat use into account. Thus, the aim of this study was to investigate the role of Ta on Tb, whole-animal EWL and whole-animal SMR in three wild caught African anuran species with different ecological specialisations: the principally aquatic African clawed frog (Xenopus laevis), stream-breeding common river frog (Amietia delalandii), and the largely terrestrial raucous toad (Sclerophrys capensis). Experiments were conducted at a range of test temperatures (5–35 °C, at 5 °C increments). We found that VPD better predicted rates of EWL than Ta in two of the three species considered. Moreover, we found that Tb, whole-animal EWL and whole-animal SMR increased with increasing Ta, while Tb increased with increasing Mb in A. delalandii and S. capensis but not in X. laevis. Whole-animal SMR increased with increasing Mb in S. capensis only. We did not find any significant effect of VPD, Mb or sex on whole-animal EWL within species. Lastly, Mb did not influence Tb, whole-animal SMR and EWL in the principally aquatic X. laevis. These results suggest that Mb may not have the same effect on key physiological variables, and that the influence of Mb may also depend on the species ecological specialisation. Thus, the generality of Mb as an important factor should be taken in the context of both physiology and species habitat specialisation.


1979 ◽  
Vol 27 (2) ◽  
pp. 195 ◽  
Author(s):  
PC Withers ◽  
AK Lee ◽  
RW Martin

Resting oxygen consumption and total evaporative water loss were determined for N. alexis at ambient temperatures of 20, 28 and 33 deg C in dry air. The minimum rate of oxygen consumption was 0.61 ml min-1 at 33 deg C, and minimum total evaporative water loss was 4.75% body mass day-1 at 28 deg C. Respiration frequency, tidal volume and respiratory minute volume were determined for N. alexis at ambient temperatures of 20, 28 and 33 deg C in air of low or high relative humidity. Minimum values were obtained at 28 deg C and low RH for respiratory minute volume and tidal volume, and at 28 deg C and high RH for respiratory frequency. Expired air temperature of N. alexis at these temperatures was lower than or similar to ambient for mice in air of low RH, but was higher than or similar to ambient at high RH. Respiratory evaporative water loss, calculated from the previous data, was greatest for mice in dry air at 33 deg C, and least in moist air at 33 deg C. Cutaneous evaporative water loss made up about 40-60% of the total evaporative water loss for mice in dry air. The rates of total evaporative water loss were clearly reflected in the manner of body temperature regulation at high ambient temperatures. Hopping-mice in moist air at 28 and 33 deg C became hyperthermic, whereas mice in dry air showed only slight increases in body temperature. The significance of these data to hopping-mice in the field was discussed.


1998 ◽  
Vol 201 (15) ◽  
pp. 2321-2331 ◽  
Author(s):  
S P Roberts ◽  
J F Harrison ◽  
N F Hadley

Thermoregulation of the thorax is critical for bees and other endothermic insects to achieve high rates of flight muscle power production. However, the mechanisms allowing insects to regulate thorax temperatures during flight are not well understood. To test whether variations in metabolic heat production, evaporation or heat transfer from the thorax to the abdomen contribute to the maintenance of stable body temperatures during flight in the bee Centris pallida, we measured CO2 production, water vapor loss, wingbeat frequency and body segment temperatures during flight at varying air temperatures (Ta). While hovering in the field and while flying in the respirometer, C. pallida males maintain extremely stable, elevated thorax temperatures (45+/-2 degrees C; mean +/- S.E.M.). Measurements of head, thorax and abdomen temperatures as a function of Ta during hovering flight in the field indicated that C. pallida males were not actively increasing heat transfer from the thorax to the head or abdomen at high Ta values. As Ta increased from 26 to 35 degrees C, increases in evaporative water loss were relatively small compared with the decrease in carbon dioxide emission. As Ta values increased from 26 to 35 degrees C, the factorial decreases in metabolic heat production and the elevation of thorax temperature above Ta were closely matched (35 %), suggesting that variation in metabolic heat production is the major mechanism of thermoregulation in flying C. pallida. The thermal effects on rates of water loss and metabolic water production resulted in a strong positive water balance at cooler Ta values, but a strong negative water balance at Ta values above 31 degrees C. During the first minute of flight in the respirometry chamber, wingbeat frequency was independent of Ta. However, by the fourth minute, there was a significant negative relationship between Ta and wingbeat frequency, which was similar to the thermal relationship observed for wingbeat frequency in the field. These data suggest that, either through homeostatic regulation or resulting secondarily from thermal effects on flight motor properties, variation in metabolic heat production may occur via altered wingbeat kinematics.


1998 ◽  
Vol 85 (1) ◽  
pp. 204-209 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
Michael N. Sawka ◽  
Kent B. Pandolf

This study examined whether serial cold-water immersions over a 10-h period would lead to fatigue of shivering and vasoconstriction. Eight men were immersed (2 h) in 20°C water three times (0700, 1100, and 1500) in 1 day (Repeat). This trial was compared with single immersions (Control) conducted at the same times of day. Before Repeat exposures at 1100 and 1500, rewarming was employed to standardize initial rectal temperature. The following observations were made in the Repeat relative to the Control trial: 1) rectal temperature was lower and heat debt was higher ( P < 0.05) at 1100; 2) metabolic heat production was lower ( P < 0.05) at 1100 and 1500; 3) subjects perceived the Repeat trial as warmer at 1100. These data suggest that repeated cold exposures may impair the ability to maintain normal body temperature because of a blunting of metabolic heat production, perhaps reflecting a fatigue mechanism. An alternative explanation is that shivering habituation develops rapidly during serially repeated cold exposures.


Sign in / Sign up

Export Citation Format

Share Document