scholarly journals Metabolic Heat Production, Heat Loss and the Circadian Rhythm of Body Temperature in the Rat

2003 ◽  
Vol 88 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Roberto Refinetti
1998 ◽  
Vol 85 (1) ◽  
pp. 204-209 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
Michael N. Sawka ◽  
Kent B. Pandolf

This study examined whether serial cold-water immersions over a 10-h period would lead to fatigue of shivering and vasoconstriction. Eight men were immersed (2 h) in 20°C water three times (0700, 1100, and 1500) in 1 day (Repeat). This trial was compared with single immersions (Control) conducted at the same times of day. Before Repeat exposures at 1100 and 1500, rewarming was employed to standardize initial rectal temperature. The following observations were made in the Repeat relative to the Control trial: 1) rectal temperature was lower and heat debt was higher ( P < 0.05) at 1100; 2) metabolic heat production was lower ( P < 0.05) at 1100 and 1500; 3) subjects perceived the Repeat trial as warmer at 1100. These data suggest that repeated cold exposures may impair the ability to maintain normal body temperature because of a blunting of metabolic heat production, perhaps reflecting a fatigue mechanism. An alternative explanation is that shivering habituation develops rapidly during serially repeated cold exposures.


1999 ◽  
Vol 202 (11) ◽  
pp. 1523-1533 ◽  
Author(s):  
S.P. Roberts ◽  
J.F. Harrison

Thermoregulation of the thorax allows honeybees (Apis mellifera) to maintain the flight muscle temperatures necessary to meet the power requirements for flight and to remain active outside the hive across a wide range of air temperatures (Ta). To determine the heat-exchange pathways through which flying honeybees achieve thermal stability, we measured body temperatures and rates of carbon dioxide production and water vapor loss between Ta values of 21 and 45 degrees C for honeybees flying in a respirometry chamber. Body temperatures were not significantly affected by continuous flight duration in the respirometer, indicating that flying bees were at thermal equilibrium. Thorax temperatures (Tth) during flight were relatively stable, with a slope of Tth on Ta of 0.39. Metabolic heat production, calculated from rates of carbon dioxide production, decreased linearly by 43 % as Ta rose from 21 to 45 degrees C. Evaporative heat loss increased nonlinearly by over sevenfold, with evaporation rising rapidly at Ta values above 33 degrees C. At Ta values above 43 degrees C, head temperature dropped below Ta by approximately 1–2 degrees C, indicating that substantial evaporation from the head was occurring at very high Ta values. The water flux of flying honeybees was positive at Ta values below 31 degrees C, but increasingly negative at higher Ta values. At all Ta values, flying honeybees experienced a net radiative heat loss. Since the honeybees were in thermal equilibrium, convective heat loss was calculated as the amount of heat necessary to balance metabolic heat gain against evaporative and radiative heat loss. Convective heat loss decreased strongly as Ta rose because of the decrease in the elevation of body temperature above Ta rather than the variation in the convection coefficient. In conclusion, variation in metabolic heat production is the dominant mechanism of maintaining thermal stability during flight between Ta values of 21 and 33 degrees C, but variations in metabolic heat production and evaporative heat loss are equally important to the prevention of overheating during flight at Ta values between 33 and 45 degrees C.


2014 ◽  
Vol 39 (7) ◽  
pp. 843-843
Author(s):  
Daniel Gagnon

The current thesis examined whether sex differences in local and whole-body heat loss are evident after accounting for confounding differences in physical characteristics and rate of metabolic heat production. Three experimental studies were performed: the first examined whole-body heat loss in males and females matched for body mass and surface area during exercise at a fixed rate of metabolic heat production; the second examined local and whole-body heat loss responses between sexes during exercise at increasing requirements for heat loss; the third examined sex-differences in local sweating and cutaneous vasodilation to given doses of pharmacological agonists, as well as during passive heating. The first study demonstrated that females exhibit a lower whole-body sudomotor thermosensitivity (553 ± 77 vs. 795 ± 85 W·°C−1, p = 0.05) during exercise performed at a fixed rate of metabolic heat production. The second study showed that whole-body sudomotor thermosensitivity is similar between sexes at a requirement for heat loss of 250 W·m−2 (496 ± 139 vs. 483 ± 185 W·m−2·°C−1, p = 0.91) and 300 W·m−2 (283 ± 70 vs. 211 ± 66 W·m−2·°C−1, p = 0.17), only becoming greater in males at a requirement for heat loss of 350 W·m−2 (197 ± 61 vs. 82 ± 27 W·m−2·°C−1, p = 0.007). In the third study, a lower sweat rate to the highest concentration of acetylcholine (0.27 ± 0.08 vs. 0.48 ± 0.13 mg·min−1·cm−2, p = 0.02) and methacholine (0.41 ± 0.09 vs. 0.57 ± 0.11 mg·min−1·cm−2, p = 0.04) employed was evidenced in females, with no differences in cholinergic sensitivity. Taken together, the results of the current thesis show that sex itself can modulate sudomotor activity, specifically the thermosensitivity of the response, during both exercise and passive heat stress. Furthermore, the results of the third study point towards a peripheral modulation of the sweat gland as a mechanism responsible for the lower sudomotor thermosensitivity in females.


1979 ◽  
Vol 57 (12) ◽  
pp. 1401-1406 ◽  
Author(s):  
M. T. Lin ◽  
Andi Chandra ◽  
T. C. Fung

The effects of both systemic and central administration of phentolamine on the thermoregulatory functions of conscious rats to various ambient temperatures were assessed. Injection of phentolamine intraperitoneally or into a lateral cerebral ventricle both produced a dose-dependent fall in rectal temperature at room temperature and below it. At a cold environmental temperature (8 °C) the hypothermia in response to phentolamine was due to a decrease in metabolic heat production, but at room temperature (22 °C) the hypothermia was due to cutaneous vasodilatation (as indicated by an increase in foot and tail skin temperatures) and decreased metabolic heat production. There were no changes in respiratory evaporative heat loss. However, in the hot environment (30 °C), phentolamine administration produced no changes in rectal temperature or other thermoregulatory responses. A central component of action is indicated by the fact that a much smaller intraventricular dose of phentolamine was required to exert the same effect as intraperitoneal injection. The data indicate that phentolamine decreases heat production and (or) increases heat loss which leads to hypothermia, probably via central nervous system actions.


1980 ◽  
Vol 239 (1) ◽  
pp. R57-R61
Author(s):  
P. E. Hillman ◽  
N. R. Scott ◽  
A. van Tienhoven

Intraventricular injections of 5-hydroxytryptamine-HCl (258 nmol) or acetylcholine-HCl (550 nmol) in the chicken caused body temperature to rise at 35 degrees C ambient, a result of decreased evaporative heat loss due to bradypnea. At 10 and 20 degrees C ambient, neither drug affected body temperature. Although these drugs decreased physical activity or shivering or both at 10 and 20 degrees C, metabolic heat production was not depressed enough to alter body temperature significantly. Heart rate decreased simultaneously with decreased activity at 20 degrees C. This study is the first to inject 5-hydroxytryptamine as a salt of HCl, instead of creatinine sulfate, as is commonly used. It is suggested that some of the differences reported herein, compared to other studies, are due to the type of salt used. It is postulated that either 5-hydroxytryptamine or acetylcholine, rather than norepinephrine, may be an important neurotransmitter in the neural pathways for thermoregulation in chickens, even though their action on thermoregulation is minor compared with norepinephrine.


2018 ◽  
Vol 1 (96) ◽  
Author(s):  
Rima Solianik ◽  
Albertas Skurvydas ◽  
Marius Brazaitis

Background. There is evidence of greater whole body cooling induced unpredictable task switching and memory deterioration in men than in women; however, it is not known how whole body cooling affects attention stability. This study aimed at identifying if there are any gender-specific differences in the effect of cold water immersion-induced stress on attention stability.Methods. Thirteen men and thirteen women were exposed to acute cold stress by immersion in 14°C water until rectal temperature reached 35.5°C or for a maximum of 170 min. Thermoregulatory response (i.e. changes of body temperature and metabolic heat production) and attention stability response (i.e. Schulte table (less cognitively demanding task) and Schulte-Gorbov table (more cognitively demanding task)) were monitored.Results. During cold stress, body temperature variables decreased (p < .05) and did not differ between genders. Metabolic  heat  production  was  greater  (p  <  .05)  in  men  than  in  women.  Body  cooling  significantly  increased  (p < .05) the duration of Schulte table performance for both genders, whereas an increase (p < .05) of the duration of Schulte-Gorbov table performance was observed only in men. Conclusion. This is the first study to find the evidence supporting the idea of gender-specific and task-dependent attention stability response after whole body cooling. Whole body cooling induced stress had similar influence on simple attention stability task in men and women, whereas more complex task was adversely affected only in men. This greater men’s decrement of complex task performance can be associated with their greater catecholamines-induced metabolic heat production.Keywords: men, women, cognitive performance, metabolic heat production, shivering.


1990 ◽  
Vol 70 (3) ◽  
pp. 833-843 ◽  
Author(s):  
A. M. NICOL ◽  
B. A. YOUNG

In a series of studies to simulate the ingestion of cold food, the rumen of adult sheep was cooled by 0–400 kJ over 1 h. Ruminal cooling reduced body heat content, increased rate of metabolic heat production and reduced apparent rate of heat loss to the environment. On average, each 100 kJ of cooling reduced heat content by 46 kJ, increased heat production by 20 kJ and reduced heat loss by 70 kJ. Precooling thermal status of the sheep affected the magnitude of the responses to cooling. A 0.1 °C higher precooling mean body temperature decreased the response in metabolic heat production by 6 kJ and increased the reduction in body heat content by 4.6 kJ. The heat production associated with eating reduced the heat loss response to ruminal cooling but did not affect the change in heat content. Well-insulated sheep were less affected by ruminal cooling. Key words: Sheep, rumen, cooling, heat production, temperature


Sign in / Sign up

Export Citation Format

Share Document