Wake dynamics and fluid forces of turning maneuvers in sunfish

2001 ◽  
Vol 204 (3) ◽  
pp. 431-442 ◽  
Author(s):  
E. Drucker ◽  
G. Lauder

While experimental analyses of steady rectilinear locomotion in fishes are common, unsteady movement involving time-dependent variation in heading, speed and acceleration probably accounts for the greatest portion of the locomotor time budget. Turning maneuvers, in particular, are key elements of the unsteady locomotor repertoire of fishes and, by many species, are accomplished by generating asymmetrical forces with the pectoral fins. The development of such left-right asymmetries in force production is a critical and as yet unstudied aspect of aquatic locomotor dynamics. In this paper, we measure the fluid forces exerted by the left and right pectoral fins of bluegill sunfish (Lepomis macrochirus) during turning using digital particle image velocimetry (DPIV). DPIV allowed quantification of water velocity fields, and hence momentum, in the wake of the pectoral fins as sunfish executed turns; forces exerted during turning were compared with those generated by the immediately preceding fin beats during steady swimming. Sunfish generate the forces required for turning by modulating two variables: wake momentum and pectoral fin stroke timing. Fins on opposite sides of the fish play functionally distinct roles during turning maneuvers. The fin nearer the stimulus inducing the turn (i.e. the strong side fin) generates a laterally oriented vortex ring with a strong central jet whose associated lateral force is four times greater than that produced during steady swimming. Little posterior (thrust) force is generated by the strong-side fin, and this fin therefore acts to rotate the body away from the source of the stimulus. The contralateral (weak-side) fin generates a posteriorly oriented vortex ring with a thrust force nine times that produced by the fin during steady swimming. Minimal lateral force is exerted by the weak-side fin, and this fin therefore acts primarily to translate the body linearly away from the stimulus. Turning with the paired fins is not simply steady swimming performed unilaterally. Instead, turning involves asymmetrical fin movements and fluid forces that are distinct in both direction and magnitude from those used to swim forward at constant speed. These data reflect the plasticity of the teleost pectoral fin in performing a wide range of steady and unsteady locomotor tasks.

2000 ◽  
Vol 203 (16) ◽  
pp. 2379-2393 ◽  
Author(s):  
E.G. Drucker ◽  
G.V. Lauder

Past study of interspecific variation in the swimming speed of fishes has focused on internal physiological mechanisms that may limit the ability of locomotor muscle to generate power. In this paper, we approach the question of why some fishes are able to swim faster than others from a hydrodynamic perspective, using the technique of digital particle image velocimetry which allows measurement of fluid velocity and estimation of wake momentum and mechanical forces for locomotion. We investigate the structure and strength of the wake in three dimensions to determine how hydrodynamic force varies in two species that differ markedly in maximum swimming speed. Black surfperch (Embiotoca jacksoni) and bluegill sunfish (Lepomis macrochirus) swim at low speeds using their pectoral fins exclusively, and at higher speeds switch to combined pectoral and caudal fin locomotion. E. jacksoni can swim twice as fast as similarly sized L. macrochirus using the pectoral fins alone. The pectoral fin wake of black surfperch at all speeds consists of two distinct vortex rings linked ventrally. As speed increases from 1.0 to 3.0 L s(−)(1), where L is total body length, the vortex ring formed on the fin downstroke reorients to direct force increasingly downstream, parallel to the direction of locomotion. The ratio of laterally to downstream-directed force declines from 0.93 to 0.07 as speed increases. In contrast, the sunfish pectoral fin generates a single vortex ring per fin beat at low swimming speeds and a pair of linked vortex rings (with one ring only partially complete and attached to the body) at maximal labriform speeds. Across a biologically relevant range of swimming speeds, bluegill sunfish generate relatively large lateral forces with the paired fins: the ratio of lateral to downstream force remains at or above 1.0 at all speeds. By increasing wake momentum and by orienting this momentum in a direction more favorable for thrust than for lateral force, black surfperch are able to swim at twice the speed of bluegill sunfish using the pectoral fins. In sunfish, without a reorientation of shed vortices, increases in power output of pectoral fin muscle would have little effect on maximum locomotor speed. We present two hypotheses relating locomotor stability, maneuverability and the structure of the vortex wake. First, at low speeds, the large lateral forces exhibited by both species may be necessary for stability. Second, we propose a potential hydrodynamic trade-off between speed and maneuverability that arises as a geometric consequence of the orientation of vortex rings shed by the pectoral fins. Bluegill sunfish may be more maneuverable because of their ability to generate large mediolateral force asymmetries between the left- and right-side fins.


1987 ◽  
Vol 24 (12) ◽  
pp. 2351-2361 ◽  
Author(s):  
Hans-Peter Schultze ◽  
Marius Arsenault

Quebecius quebecensis (Whiteaves 1889) is a porolepiform crossopterygian related to Glyptolepis. A large nariodal, a large tabular, a separate intertemporal, and a large fused nasosupraorbital are features of Quebecius that characterize it as a porolepiform. The small size of the operculum, median extrascapular larger than the lateral one, small lower squamosals, and deep maxilla are additional features separating Quebecius from Glyptolepis. As in Glyptolepis, the median fins are not lobed. The pectoral fin possesses a long fleshy lobe. The internal, ventral side of the broadly based pelvic fin suggests that the internal axis has shifted towards the body. Pectoral fins with a long fleshy lobe are a common feature of porolepiforms, but lobed bases in the pelvic and unpaired fins are a feature found in Holoptychius, and not in Glyptolepis and Quebecius. Quebecius quebecensis is conspecific with Quebecius williamsi Schultze 1973, mistakenly described as an onychodont crossopterygian.


2002 ◽  
Vol 205 (19) ◽  
pp. 2997-3008 ◽  
Author(s):  
Ravi Ramamurti ◽  
William C. Sandberg ◽  
Rainald Löhner ◽  
Jeffrey A. Walker ◽  
Mark W. Westneat

SUMMARY Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists,biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin,and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier—Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.


2011 ◽  
Vol 78 (5) ◽  
Author(s):  
Roxan Cayzac ◽  
Eric Carette ◽  
Pascal Denis ◽  
Philippe Guillen

An overview of the Magnus effect of projectiles and missiles is presented. The first part of the paper is devoted to the description of the physical mechanisms governing the Magnus effect. For yawing and spinning projectiles, at small incidences, the spin induces a weak asymmetry of the boundary layer profiles. At high incidences, increased spin causes the separated vortex sheets to be altered. Vortex asymmetry generates an additional lateral force which gives a vortex contribution to the total Magnus effect. For finned projectiles or missiles, the origin of the Magnus effect on fins is the main issue. There are two principal sources contributing to the Magnus effect. Firstly, the interaction between the asymmetric boundary layer-wake of the body and the fins, and secondly, the spin induced modifications of the local incidences and of the flow topology around the fins. The second part of the paper is devoted to the numerical prediction and validation of these flow phenomena. A state of the art is presented including classical CFD methods based on Reynolds-averaged Navier–Stokes (RANS) and unsteady rans (URANS) equations, and also hybrid RANS/LES approach called ZDES. This last method is a recent advance in turbulence modeling methodologies that allows to take into account the unsteadiness of the flow in the base region. For validation purposes computational results were compared with wind tunnel tests. A wide range of angles of attack, spin rates, Reynolds and Mach numbers (subsonic, transonic and supersonic) have been investigated.


1979 ◽  
Vol 82 (1) ◽  
pp. 255-271
Author(s):  
R. W. BLAKE

1. A blade-element approach is used to analyse the mechanics of the drag-based pectoral fin power stroke in an Angelfish in steady forward, rectilinear progression. 2. Flow reversal occurs at the base of the fin at the beginning and at the end of the power stroke. Values for the rate of increase and decrease in the relative velocity of the blade-elements increase distally, as do such values for hydrodynamical angle of attack. At the beginning and end of the power stroke, negative angles occur at the base of the fin. 3. The outermost 40% of the fin produces over 80% of the total thrust produced during the power stroke, and doe8 over 80% of the total work. Small amounts of reversed thrust are produced at the base of the fin during the early and late parts of the stroke. 4. The total amount of energy required during a cycle to drag the body and inactive fins through the water is calculated to be approximately 2.8 × 10−6 J and the total energy produced by the fins over the cycle (ignoring the recovery stroke) which is associated with producing the hydrodynamic thrust force, is about 1.0 × 10−5 J; which gives a propulsive efficiency of about 0.26. 5. The energy required to move the mass of a pectoral fin during the power stroke is calculated to be approximately 2.6 × 10−7 J. Taking this into account reduces the value of the propulsive efficiency by about 4% to about 0.25. The total energy needed to accelerate and decelerate the added mass associated with the fin is calculated and added to the energy required to produce the hydrodynamic thrust force and the energy required to move the mass of the fins; giving a final propulsive efficiency of 0.18.


2001 ◽  
Vol 204 (17) ◽  
pp. 2943-2958 ◽  
Author(s):  
Eliot G. Drucker ◽  
George V. Lauder

SUMMARYA key evolutionary transformation of the locomotor system of ray-finned fishes is the morphological elaboration of the dorsal fin. Within Teleostei, the dorsal fin primitively is a single midline structure supported by soft, flexible fin rays. In its derived condition, the fin is made up of two anatomically distinct portions: an anterior section supported by spines, and a posterior section that is soft-rayed. We have a very limited understanding of the functional significance of this evolutionary variation in dorsal fin design. To initiate empirical hydrodynamic study of dorsal fin function in teleost fishes, we analyzed the wake created by the soft dorsal fin of bluegill sunfish (Lepomis macrochirus) during both steady swimming and unsteady turning maneuvers. Digital particle image velocimetry was used to visualize wake structures and to calculate in vivo locomotor forces. Study of the vortices generated simultaneously by the soft dorsal and caudal fins during locomotion allowed experimental characterization of median-fin wake interactions.During high-speed swimming (i.e. above the gait transition from pectoral- to median-fin locomotion), the soft dorsal fin undergoes regular oscillatory motion which, in comparison with analogous movement by the tail, is phase-advanced (by 30% of the cycle period) and of lower sweep amplitude (by 1.0cm). Undulations of the soft dorsal fin during steady swimming at 1.1bodylengths−1 generate a reverse von Kármán vortex street wake that contributes 12% of total thrust. During low-speed turns, the soft dorsal fin produces discrete pairs of counterrotating vortices with a central region of high-velocity jet flow. This vortex wake, generated in the latter stage of the turn and posterior to the center of mass of the body, counteracts torque generated earlier in the turn by the anteriorly positioned pectoral fins and thereby corrects the heading of the fish as it begins to translate forward away from the turning stimulus. One-third of the laterally directed fluid force measured during turning is developed by the soft dorsal fin. For steady swimming, we present empirical evidence that vortex structures generated by the soft dorsal fin upstream can constructively interact with those produced by the caudal fin downstream. Reinforcement of circulation around the tail through interception of the dorsal fin’s vortices is proposed as a mechanism for augmenting wake energy and enhancing thrust.Swimming in fishes involves the partitioning of locomotor force among several independent fin systems. Coordinated use of the pectoral fins, caudal fin and soft dorsal fin to increase wake momentum, as documented for L. macrochirus, highlights the ability of teleost fishes to employ multiple propulsors simultaneously for controlling complex swimming behaviors.


1994 ◽  
Vol 189 (1) ◽  
pp. 133-161 ◽  
Author(s):  
A Gibb ◽  
B Jayne ◽  
G Lauder

The pectoral fins of ray-finned fishes are flexible and capable of complex movements, and yet little is known about the pattern of fin deformation during locomotion. For the most part, pectoral fins have been modeled as rigid plates. In order to examine the movements of different portions of pectoral fins, we quantified the kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus using several points on the distal fin edge and examined the effects of swimming speed on fin movements. We simultaneously videotaped the ventral and lateral views of pectoral fins of four fish swimming in a flow tank at five speeds ranging from 0.3 to 1.1 total lengths s-1. Four markers, placed on the distal edge of the fin, facilitated field-by-field analysis of kinematics. We used analyses of variance to test for significant variation with speed and among the different marker positions. Fin beat frequency increased significantly from 1.2 to 2.1 Hz as swimming speed increased from 0.3 to 1.0 total lengths s-1. Maximal velocities of movement for the tip of the fin during abduction and adduction generally increased significantly with increased swimming speed. The ratio of maximal speed of fin retraction to swimming speed declined steadily from 2.75 to 1.00 as swimming speed increased. Rather than the entire distal edge of the fin always moving synchronously, markers had phase lags as large as 32 with respect to the dorsal edge of the fin. The more ventral and proximal portions of the fin edge usually had smaller amplitudes of movement than did the more dorsal and distal locations. With increased swimming speed, the amplitudes of the lateral and longitudinal fin movements generally decreased. We used two distal markers and one basal reference point to determine the orientation of various planar fin elements. During early adduction and most of abduction, these planar fin elements usually had positive angles of attack. Because of fin rotation, angles of attack calculated from three-dimensional data differed considerably from those estimated from a simple lateral projection. As swimming speed increased, the angles of attack of the planar fin elements with respect to the overall direction of swimming approached zero. The oscillatory movements of the pectoral fins of bluegill suggest that both lift- and drag-based propulsive mechanisms are used to generate forward thrust. In addition, the reduced frequency parameter calculated for the pectoral fin of Lepomis (sigma=0.85) and the Reynolds number of 5x10(3) indicate that acceleration reaction forces may contribute significantly to thrust production and to the total force balance on the fin.


2011 ◽  
Vol 45 (4) ◽  
pp. 65-73 ◽  
Author(s):  
James L. Tangorra ◽  
Timo Gericke ◽  
George V. Lauder

AbstractAdvanced propulsors are required to help unmanned undersea vehicles (UUVs) overcome major challenges associated with energy and autonomy. The fins of ray-finned fish provide an excellent model from which to develop propulsors that can create forces efficiently and drive a wide range of behaviors, from hover to low-speed maneuvers to high-speed travel. Although much is known about the mechanics of fins, little is known about the fin’s sensorimotor systems or how fins are regulated in response to external disturbances. This information is crucial for implementing propulsive and control systems that exploit the same phenomena as the biological fins for efficiency, effectiveness, and autonomous regulation. Experiments were conducted to evaluate the in vivo response of the sunfish and its pectoral fins to vortex perturbations applied directly to the fish and to the fins. The fish and the fins responded actively to perturbations that disturbed the motion of the fish body. Surprisingly, perturbations that deformed the fins extensively did not cause a reaction from either the fins or the body. These results indicate that the response of the pectoral fins to large deformations is not reflexive and that fin motions are regulated when it is necessary to correct for disturbances to the motion of the fish. The results also demonstrate a benefit of compliance in propulsors, in that external perturbations can disturb the fins without having its impact be transferred to the fish body.


2015 ◽  
Vol 112 (52) ◽  
pp. 15940-15945 ◽  
Author(s):  
Tetsuya Nakamura ◽  
Jeff Klomp ◽  
Joyce Pieretti ◽  
Igor Schneider ◽  
Andrew R. Gehrke ◽  
...  

Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies.


2008 ◽  
Vol 58 ◽  
pp. 193-202 ◽  
Author(s):  
Meliha Bozkurttas ◽  
James Tangorra ◽  
George Lauder ◽  
Rajat Mittal

The research effort described here is concerned with developing a maneuvering propulsor for an autonomous underwater vehicle (AUV’s) based on the mechanical design and performance of sunfish pectoral fin. Bluegill sunfish (Lepomis macrochirus) are highly maneuverable bony fishes that have been the subject of a number of experimental analyses of locomotor function [5, 6]. Although swimming generally involves the coordinated movement of many fin surfaces, the sunfish is capable of propulsion and maneuvering using almost exclusively the pectoral fins. They use pectoral fins exclusively for propulsion at speeds of less than 1.1 body length per second (BL/s). The curve in Fig. 1 depicts two peaks of body acceleration of bluegill sunfish during steady forward swimming. These abilities are the direct result of their pectoral fins being highly deformable control surfaces that can create vectored thrust. The motivation here is that by understanding these complex, highly controlled movements and by borrowing appropriately from pectoral fin design, a bio-robotic propulsor can be designed to provide vectored thrust and high levels of control to AUVs. This paper will focus on analyses of bluegill sunfish’s pectoral fin hydrodynamics which were carried out to guide the design of a flexible propulsor for AUV’s


Sign in / Sign up

Export Citation Format

Share Document