scholarly journals Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape

2021 ◽  
Vol 224 (Suppl_1) ◽  
Author(s):  
Inna Sokolova

ABSTRACT Energy metabolism (encompassing energy assimilation, conversion and utilization) plays a central role in all life processes and serves as a link between the organismal physiology, behavior and ecology. Metabolic rates define the physiological and life-history performance of an organism, have direct implications for Darwinian fitness, and affect ecologically relevant traits such as the trophic relationships, productivity and ecosystem engineering functions. Natural environmental variability and anthropogenic changes expose aquatic ectotherms to multiple stressors that can strongly affect their energy metabolism and thereby modify the energy fluxes within an organism and in the ecosystem. This Review focuses on the role of bioenergetic disturbances and metabolic adjustments in responses to multiple stressors (especially the general cellular stress response), provides examples of the effects of multiple stressors on energy intake, assimilation, conversion and expenditure, and discusses the conceptual and quantitative approaches to identify and mechanistically explain the energy trade-offs in multiple stressor scenarios, and link the cellular and organismal bioenergetics with fitness, productivity and/or ecological functions of aquatic ectotherms.

2018 ◽  
Author(s):  
Martin I. Lind ◽  
Sanjana Ravindran ◽  
Zuzana Sekajova ◽  
Hanne Carlsson ◽  
Andrea Hinas ◽  
...  

AbstractClassical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signalling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signalling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signalling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that sub-optimal gene expression in late-life lies at the heart of ageing.Impact StatementUnderstanding mechanisms underpinning ageing is fundamental to improving quality of life in an increasingly long-lived society. Recent breakthroughs have challenged the long-standing paradigm that the energy trade-off between reproduction and somatic maintenance causes organismal senescence via slow accumulation of unrepaired cellular damage with age. The emerging new theory of ageing provides a conceptually novel framework by proposing that ageing is a direct consequence of physiological processes optimized for early-life function, such as growth and early-life reproduction, that are running ‘too high’ (i.e. at hyperfunction) in late adulthood. Contrary to the classic view based on damage accumulation, the hyperfunction theory proposes that suboptimal gene expression in late-life causes ageing via excessive biosynthesis. Thus, the hyperfunction theory uniquely predicts that longevity and Darwinian fitness can be simultaneously increased by reducing unnecessarily high levels of nutrient-sensing signalling in adulthood. Here we show that reducing evolutionarily conserved nutrient-sensing signalling pathway fulfils this prediction in Caenorhabditis elegans nematodes. We found that downregulation of the insulin/IGF-1 signalling in adult C. elegans nematodes not only improves longevity but, most intriguingly, increases fitness of the resulting offspring in the next generation. We found support for increase in offspring fitness across different genetic backgrounds. Our findings contradict the theoretical conjecture that energy trade-offs between growth, reproduction and longevity is the universal cause of senescence and provide strong experimental support for the emerging hyperfunction theory of ageing.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2017 ◽  
Vol 49 (6) ◽  
pp. 783 ◽  
Author(s):  
Yan WANG ◽  
Zhenchao LIN ◽  
Bowen HOU ◽  
Shijin SUN

2019 ◽  
Author(s):  
Min Pi ◽  
Fuyi Xu ◽  
Ruisong Ye ◽  
Satoru K. Nishimoto ◽  
Robert A. Kesterson ◽  
...  

Author(s):  
Chelsea Barabas

This chapter discusses contemporary debates regarding the use of artificial intelligence as a vehicle for criminal justice reform. It closely examines two general approaches to what has been widely branded as “algorithmic fairness” in criminal law: the development of formal fairness criteria and accuracy measures that illustrate the trade-offs of different algorithmic interventions; and the development of “best practices” and managerialist standards for maintaining a baseline of accuracy, transparency, and validity in these systems. Attempts to render AI-branded tools more accurate by addressing narrow notions of bias miss the deeper methodological and epistemological issues regarding the fairness of these tools. The key question is whether predictive tools reflect and reinforce punitive practices that drive disparate outcomes, and how data regimes interact with the penal ideology to naturalize these practices. The chapter then calls for a radically different understanding of the role and function of the carceral state, as a starting place for re-imagining the role of “AI” as a transformative force in the criminal legal system.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Author(s):  
David Mares

This chapter discusses the role of energy in economic development, the transformation of energy markets, trade in energy resources themselves, and the geopolitical dynamics that result. The transformation of energy markets and their expansion via trade can help or hinder development, depending on the processes behind them and how stakeholders interact. The availability of renewable, climate-friendly sources of energy, domestically and internationally, means that there is no inherent trade-off between economic growth and the use of fossil fuels. The existence of economic, political, social, and geopolitical adjustment costs means that the expansion of international energy markets to incorporate alternatives to oil and coal is a complex balance of environmental trade-offs with no solutions completely free of negative impact risk. An understanding of the supply of and demand for energy must incorporate the institutional context within which they occur, as well as the social and political dynamics of their setting.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 99
Author(s):  
Shweta Devi ◽  
Vijay Kumar ◽  
Sandeep Kumar Singh ◽  
Ashish Kant Dubey ◽  
Jong-Joo Kim

Neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document