Regional Differentiation of Neuromuscular Synapses in a Lobster Receptor Muscle

1979 ◽  
Vol 79 (1) ◽  
pp. 99-114
Author(s):  
DENNIS E. MEISS ◽  
C. K. GOVIND

Properties of the synapses and muscle fibres of the distal accessory flexor muscle (DAFM) were examined in the first and second walking legs of the lobster, Homarus americanus. Stimulation of the single excitor axon produces large amplitude, poorly facilitating excitatory postsynaptic potentials (EPSPs) in the distally located fibres and small amplitude, highly facilitating EPSPs in the proximally located fibres. The input resistances (Rin) of the muscle fibres were correlated with EPSP properties such that small amplitude, highly facilitating EPSPs occurred in fibres with low Rin and large amplitude, poorly facilitating EPSPs occurred in fibres with higher Rin. All muscle fibres were similar for other membrane electrical properties. Regression analyses however show a minor contribution of Rin to the size of intracellularly recorded synaptic potentials and to their facilitation properties. Thus, differences in muscle membrane properties cannot explain the observed diversity in EPSPs. Instead EPSP diversity is based on differences in transmitter output at single synaptic foci: highly facilitating synapses with low quantal release occur only on proximally located muscle fibres and poorly facilitating synapses with high release occur only on distally located ones. Thus, the EPSP diversity from the single excitor axon to the lobster DAFM is largely presynaptic in origin.

1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


It was shown in an earlier paper (7) that if maximal stimulation of either of two different afferent nerves can reflexly excite fractions of a given flexor muscle, there are generally, within the aggregate of neurones which innervate that muscle, motoneurones which can be caused to discharge by either afferent (i. e., motoneurones common to both fractions). The relationship which two such afferents bear to a common motoneurone was shown, by the isometric method of recording contraction, to be such that the activation of one afferent, at a speed sufficient to cause a maximal motor tetanus when trans­mitted to the muscle fibres, caused exclusion of any added mechanical effect when the other afferent was excited concurrently. This default in mechanical effect was called “occlusion.” Occlusion may conceivably be due to total exclusion of the effect of one afferent pathway on the common motoneurone by the activity of the other; but facilitation of the effect of one path by the activation of the other when the stimuli were minimal suggests that, in some circumstances at least, the effect of each could augment and summate with th at of the other at the place of convergence of two afferent pathways. Further investigation, using the action currents of the muscle as indication of the nerve impulses discharged by the motoneurone units, has now given some information regarding the effect of impulses arriving at the locus of convergence by one afferent path when the unit common to both is already discharging in response to impulses arriving by the other afferent path. Our method has been to excite both afferent nerves in overlapping sequence by series of break shocks at a rapid rate and to examine the action currents of the resulting reflex for evidence of the appearance of the rhythm of the second series in the discharge caused by the first when the two series are both reaching the motoneurone.


1976 ◽  
Vol 31 (12) ◽  
pp. 1517-1519 ◽  
Author(s):  
P. K. Shukla ◽  
M. Y. Yu ◽  
S. G. Tagare

Abstract We show analytically that the nonlinear coupling of a large amplitude electromagnetic wave with finite amplitude ion fluctuations leads to filamentation. The latter consists of striations of the electromagnetic radiation trapped in depressions of the plasma density. The filamentation is found to be either standing or moving normal to the direction of the incoming radiation. Criteria for the existence of localized filaments are obtained. Small amplitude results are discussed.


2000 ◽  
Vol 203 (14) ◽  
pp. 2229-2236 ◽  
Author(s):  
M.W. Beaumont ◽  
E.W. Taylor ◽  
P.J. Butler

Previously, the distribution of ammonia between the intracellular and extracellular compartments has been used to predict a significant depolarisation of the resting membrane potential (E(M)) of white muscle from brown trout (Salmo trutta) exposed to a sub-lethal combination of copper and low pH. However, this prediction is based upon two assumptions (i) a relatively high membrane permeability for the ammonium ion with respect to that for ammonia gas and (ii) that this is unaltered by exposure to copper and low pH. Since there is conflicting evidence in the literature of the validity of these assumptions, in the present study E(M) was directly measured in white muscle fibres of trout exposed to copper and low pH (E(M)=−52.2+/−4.9 mV) and compared with that of unexposed, control animals (E(M)=−86.5+/−2.9 mV) (means +/− s.e.m., N=6). In confirming the predicted depolarisation, these data support the hypothesis of electrophysiological impairment as a factor in the reduction in the swimming performance of trout exposed to these pollutants. In addition, the results of this study support the role of a significant permeability of the muscle membrane to NH(4)(+) in determining the distribution of ammonia in fish.


2020 ◽  
Author(s):  
Aleksandra M. Mech ◽  
Anna-Leigh Brown ◽  
Giampietro Schiavo ◽  
James N. Sleigh

AbstractThe neuromuscular junction (NMJ) is the highly specialised peripheral synapse formed between lower motor neuron terminals and muscle fibres. Post-synaptic acetylcholine receptors (AChRs), which are found in high density in the muscle membrane, bind to acetylcholine released into the synaptic cleft of the NMJ, ultimately facilitating the conversion of motor action potentials to muscle contractions. NMJs have been studied for many years as a general model for synapse formation, development and function, and are known to be early sites of pathological changes in many neuromuscular diseases. However, information is limited on the diversity of NMJs in different muscles, whether muscle fibre type impacts NMJ morphology and growth, and the relevance of these parameters to neuropathology. Here, this crucial gap was addressed using a robust and standardised semi-automated workflow called NMJ-morph to quantify features of pre- and post-synaptic NMJ architecture in an unbiased manner. Five wholemount muscles from wild-type mice were dissected and compared at immature (post-natal day, P7) and early adult (P31-32) timepoints. Post-synaptic AChR morphology was found to be more variable between muscles than that of the motor neuron terminal and there were greater differences in the developing NMJ than at the mature synapse. Post-synaptic architecture, but not neuronal morphology or post-natal synapse growth, correlates with fibre type and is largely independent of muscle fibre diameter. Counter to previous observations, this study indicates that smaller NMJs tend to innervate muscles with higher proportions of fast twitch fibres and that NMJ growth rate is not conserved across all muscles. Furthermore, healthy pre- and post-synaptic NMJ morphological parameters were collected for five anatomically and functionally distinct mouse muscles, generating reference data that will be useful for the future assessment of neuromuscular disease models.Graphical Abstract


Geophysics ◽  
1987 ◽  
Vol 52 (9) ◽  
pp. 1229-1251 ◽  
Author(s):  
Bill Dragoset ◽  
Neil Hargreaves ◽  
Ken Larner

The signature of an air‐gun array can change over a period of time or even from one shot to the next. If the signature variations are large, then deterministic deconvolution, with an operator designed from a single signature or from an average signature, could produce errors significant enough to affect data interpretation. Possible sources of air‐gun instability include changes in gun positions, firing times, and pressures, gun failures, and scattering from the fluctuating rough ocean surface. If an air‐gun array were perfectly stable, after application of signature deconvolution the residual signatures for a sequence of shots would be identically shaped, broadband, zero‐phase wavelets. In practice, air‐gun instabilities lead to two major defects in band‐ limited residual signatures: the central portion of the wavelet can become asymmetrical, and unsuppressed energy can occur in the residual bubble region. Processing experiments done with synthesized air‐gun array signatures show that of all types of air‐gun instabilities likely to occur, only gun dropouts cause signature variations severe enough to affect data interpretation. Gun dropouts produce unsuppressed residual bubble energy that can show up as phantom events on a stacked section or that can obscure small‐amplitude events following large‐amplitude events. Neither gun dropouts nor any other kind of air‐gun instability has a significant effect on resolution within the seismic band. Since gun dropouts do not happen on a shot‐to‐shot basis and other instabilities are unimportant, there is no practical benefit to be gained by deriving and applying individual signature deconvolution operators for each shot. The influence of gun dropouts can be minimized through other actions taken in acquisition and processing.


1998 ◽  
Vol 201 (12) ◽  
pp. 1885-1893 ◽  
Author(s):  
K Sasaki ◽  
M Burrows

The flexor tibiae muscle of a locust hind leg consists of 10-11 pairs of fibre bundles in the main body of the muscle and a distal pair of bundles that form the accessory flexor muscle, all of which insert onto a common tendon. It is much smaller than the antagonistic extensor tibiae muscle and yet it is innervated by nine excitatory motor neurons, compared with only two for the extensor. To determine the pattern of innervation within the muscle by individual motor neurons, branches of the nerve (N5B2) that supplies the different muscle bundles were backfilled to reveal somata in the metathoracic ganglion. This showed that different muscle bundles are innervated by different numbers of excitatory motor neurons. Physiological mapping of the innervation was then carried out by intracellular recordings from the somata of flexor motor neurons in the metathoracic ganglion using microelectrodes. Spikes were evoked in these neurons by the injection of current, and matching junctional potentials were sought in fibres throughout the muscle using a second intracellular electrode. Each motor neuron innervates only a restricted array of muscle fibres and, although some innervate a larger array than others, none innervates fibres throughout the muscle. Some motor neurons innervate only proximal fibres and others only more distal fibres, so that the most proximal and most distal bundles of muscle fibres are innervated by non-overlapping sets of motor neurons. More motor neurons innervate proximal bundles than distal ones, and there are some asymmetries in the number of motor neurons innervating corresponding bundles on either side of the tendon. Individual motor neurons cause slow, fast or intermediate movements of the tibia, but their patterns of innervation overlap in the different muscle bundles. Furthermore, individual muscle fibres may also be innervated by motor neurons with different properties.


Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 13-26
Author(s):  
c. K. Govind ◽  
Philip J. Stephens ◽  
Judith S. Eisen

Motor innervation of the deep extensor muscle in the abdomen of lobsters (Homarus americanus) was compared in adults and embryos using electrophysiological techniques. There is widespread innervation of the adult muscle by the common excitor and inhibitor axons and regionally restricted or private innervation by three more excitor axons. In the embryo the earliest sign of functional innervation revealed a single inhibitory and two to three excitatory axons thus denoting simultaneous innervation by the full complement of axons. In corroboration, serial-section electron microscopy revealed several axon profiles invading the embryonic deep extensor muscles and giving rise to well-defined neuromuscular synapses with presynaptic dense bars. Innervation patterns to homologous regions of the embryonic and adult muscles were similar, consisting of a few large inhibitory synapses and many small excitatory ones. Consequently the adult pattern of polyneuronal innervation occurs simultaneously and in toto during embryonic development.


1968 ◽  
Vol 49 (2) ◽  
pp. 223-250
Author(s):  
M. BURROWS ◽  
G. A. HORRIDGE

1. The actions of the nine eyecup muscles of the crab during horizontal optokinetic movements are described. 2. Each muscle includes a wide spectrum of fibre types, ranging from phasic, with sarcomere lengths of 3-4 µm., through intermediate, to tonic fibres with sarcomeres of 10-12 µm. Each muscle receives at least one slow and one fast motoneuron, but no inhibitory supply. The slow axons predominantly innervate the tonic muscle fibres while the fast axons innervate the phasic ones. 3. Slow movement and the position of the eyecup in space are controlled by the frequency of slow motoneuron discharges. All muscles collaborate at every position. The phasic system is recruited during rapid eyecup movements of large amplitude. 4. In optokinetic nystagmus the exact form of the impulse sequences are described for each muscle. They are the consequence of a visually driven central programme which takes no account of the movement which it generates. Movements in opposite directions involve different central programmes; the one is not merely the reverse of the other. There is no effective proprioceptive feedback from the eyecup joint or from muscle tension receptors.


Sign in / Sign up

Export Citation Format

Share Document