Behavioural and Mechanosensory Neurone Responses to Skin Stimulation in Leeches

1982 ◽  
Vol 96 (1) ◽  
pp. 143-160
Author(s):  
WILLIAM B. KRISTAN ◽  
STEPHEN J. McGIRR ◽  
GREGORY V. SIMPSON

1. Behavioural responses to electrical stimulation of mechanosensory neurones were characterized in two species of leeches, Hirudo medicinalis and Macrobdella decora. 2. Depending upon the site and intensity of stimulation, the stimuli elicited one or a combination of five different responses: local bending, curling, shortening, whole-body bending or swimming. 3. The electrical threshold for activating identified mechanosensory neurones, T (touch) cells and P (pressure) cells, was the same in all regions of the body. 4. The voltage range over which the electrical stimuli produced progressively more mechanosensory impulses was the same as the range that produced different behavioural responses. 5. These results suggest that the T and P mechanosensory neurones provide the entire sensory input for all the behavioural responses. The production of different behavioural responses to stimuli of different intensities at the same location are attributable to different firing rates of the same sensory cells, and different responses to the same stimulus at different locations suggest different interneuronal targets for the T and P cells in different body regions.

2022 ◽  
Vol 53 (5) ◽  
Author(s):  
Milivoje Urošević ◽  
Darko Drobnjak ◽  
Radomir Mandić ◽  
Ružica Trailović ◽  
Goran Stanišić ◽  
...  

The domestic donkey (Equus asinus) has a very specific body construction. It is built in such a way that the mutual relationship of individual body regions enables great work endurance. The fact that this breed of domestic animal originates from wild ancestors, originated and developed in Africa, clearly shows that the breed developed in harsh climatic and ecological conditions that conditioned the appropriate biological response. The biostatic model causes the biodynamic effect, i.e., the production of biokinetic energy. Movement forwards occurs as a consequence of the creation of biokinetic energy and its transfer from the back part of the body, where it originates, to the front part of the body. The most efficient transfer of biokinetic energy is enabled by the existence of an appropriate biostatic model, i.e., body structure, and this leads to a biodynamic effect that is defined as a movement. For the process of movement, the muscles must be well developed. Two muscle groups are distinguished; a) pelvic muscles, b) external hip and croup joint muscles. The basic lever for the transfer of biokinetic energy is the femur. The generated energy is transferred from the hip joint to the thigh muscles, which shortening leads to the movement of the hind leg forward, its leaning against the ground and pushing the whole body forward. The generated biokinetic energy cause the bio kinematic effect, which is characterized as a movement.


2021 ◽  
Author(s):  
Amanda Avona ◽  
Theodore J Price ◽  
Gregory Dussor

Abstract Background: Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, pain conditions in the lower parts of the body do not generally lead to cutaneous hypersensitivity in the head. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations.Methods: Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results: Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions : Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.


1988 ◽  
Vol 59 (2) ◽  
pp. 299-316 ◽  
Author(s):  
F. A. Lenz ◽  
J. O. Dostrovsky ◽  
R. R. Tasker ◽  
K. Yamashiro ◽  
H. C. Kwan ◽  
...  

1. We have studied the functional and somatotopic properties of 531 single mechanoreceptive thalamic neurons in humans undergoing stereotactic surgery for the control of movement disorders and pain. The majority of these somatosensory cells had small receptive fields (RFs) and were activated in a reproducible manner by mechanical stimuli applied to the skin or deep tissues. These neurons, which we termed "lemniscal," could be further classified into those responding to stimulation of cutaneous (76% of lemniscal sensory cells) or deep (24%) structures. 2. The incidence of neurons having cutaneous or mucosal RFs in the perioral region, thumb, and fingers (66%) was much higher than that of neurons having RFs elsewhere on the body. Most of the deep cells were activated by movements of and/or mechanical stimuli delivered to muscles or tendons controlling the elbow, wrist, and fingers. 3. Sequences of cells spanning several millimeters in the parasagittal plane often exhibited overlapping RFs. However, RFs changed markedly for cells separated by the same distances in the mediolateral direction. This suggests that the cutaneous somatotopic representation of each region of the body is organized into relatively thin sheets of cells oriented in the parasagittal plane. 4. By comparing neuronal RFs in different parasagittal planes in thalamus of individual patients we have identified a mediolateral representation of body surface following the sequence from: intraoral structures, face, thumb through fifth finger to palm, with forearm and leg laterally. 5. Along many trajectories in the parasagittal plane the sequence of cells with overlapping RFs was interrupted by another sequence of cells with RFs corresponding to a different body region. The RFs of the intervening sequence characteristically represented body regions known to be located more medially in thalamus (see 3 above). These findings could be explained if the lamellae postulated above were laterally convex. 6. Cells responding to deep stimulation (deep cells) could be further classified into those responding to joint movement (63%), deep pressure (15%), or both (22%). Deep cells were found usually at the anterior-dorsal border and sometimes at the posterior border of the region containing cells responding to cutaneous stimuli. Although there was some overlap in the RFs, deep cells representing wrist were found medial to those representing elbow, and both of these were found medial to cells representing leg.(ABSTRACT TRUNCATED AT 400 WORDS)


Healthcare ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Marco Tramontano ◽  
Federica Tamburella ◽  
Fulvio Dal Farra ◽  
Andrea Bergna ◽  
Christian Lunghi ◽  
...  

Background: Osteopathic manipulative treatment (OMT) is a patient-centred, whole-body intervention aimed at enhance the person’s self-regulation. OMT interventions are focused on somatic dysfunctions (SD) that can be defined as an altered regulative function associated with inflammatory signs palpable in the body framework in different body regions. The conceptual model that sustains SD, as well as its usefulness for the osteopathic profession, is still being discussed by the osteopathic community. Understanding the role and the application of SD is the aim of this scoping review. Methods: A literature search was carried out through the main biomedical databases: Pubmed (Medline), Cochrane, Central (Cochrane), Embase, PEDro and Scopus. Grey literature was considered via Google Scholar and the Osteopathic Research Web. The review was prepared by referring to the “Preferred Reporting Items for Systematic reviews and Meta-Analysis extension for Scoping Reviews” (PRISMA-ScR). Results: A total of 37,279 records were identified through database searching and other sources. After the duplicates were removed, 27,023 titles and abstracts were screened. A total of 1495 full-text articles were assessed for eligibility. The qualitative synthesis included 280 studies. Conclusions: Treating SD is an important part of osteopathic practice that varies from country to country. SD should be considered as a clinical value that assists in the clinical assessment and guides the decision-making process of osteopathic practitioners. Further studies should be designed to better understand why and how to choose the different assessment and intervention modalities to approach SD and to evaluate new osteopathic models.


1991 ◽  
Vol 156 (1) ◽  
pp. 81-99 ◽  
Author(s):  
S. R. Soffe

Embryos of the frog Rana temporaria up to and around the time of hatching show a range of rhythmic and non-rhythmic movements. These may occur spontaneously or in response to lightly touching the skin of the trunk or head. The first response to touching one side is usually on the opposite side. Non-rhythmic movements range from weak twitches centred on the mid trunk to strong flexions along much of one side of the body and part of the tail, which result in the animal becoming tightly coiled. Rhythmic movements range from slow, high-amplitude ‘lashing’ movements to faster, lower-amplitude ‘swimming’ movements. During rhythmic movements, a wave of bending passes along the animal from head to tail. The longitudinal phase delay in bending is constant for a range of cycle periods (88–193 ms) but is not uniform along the whole body. Bending is maximal along the body and rostral part of the tail, decreases towards the tip of the tail and is lowest at the head. Lateral displacement during rhythmic movements is lowest 0.2 body lengths from the snout, increases rostral and caudal to this level and is highest at the tip of the tail. In animals immobilised with curare, a range of patterns of motor discharge can be recorded in response to stimulation. Non-rhythmic responses range from single spikes to prolonged bursts, usually on the opposite side to the stimulus. Stronger bursts can alternate briefly between the two sides and are never synchronous on both. Episodes of sustained rhythmic activity can be evoked by touch, electrical stimulation of the skin or, rarely, dimming the lights. Cycle periods within each episode can vary considerably but often shorten as activity proceeds. Discharge on the two sides alternates (phase is approximately 0.5). Motor root burst duration correlates with cycle period, bursts being longer at longer cycle periods. Burst onset is delayed caudally, this delay being longer at longer cycle periods. Stimulating one side of the head evokes a large burst of discharge on the opposite side, often followed by sustained rhythmic discharge. These responses in immobilised animals are judged to constitute centrally generated correlates of the main behavioural responses of R. temporaria embryos.


1991 ◽  
Vol 158 (1) ◽  
pp. 97-116 ◽  
Author(s):  
G. P. Ferguson ◽  
P. R. Benjamin

The role of centrally located motoneurones in producing the whole-body withdrawal response of Lymnaea stagnalis (L.) was investigated. The motoneurones innervating the muscles used during whole-body withdrawal, the columellar muscle (CM) and the dorsal longitudinal muscle (DLM) were cells with a high resting potential (−60 to −70 mV) and thus a high threshold for spike initiation. In both semi-intact and isolated brain preparations these motoneurones showed very little spontaneous spike activity. When spontaneous firing was seen it could be correlated with the occurrence of two types of spontaneous excitatory postsynaptic potential (EPSP). One was a unitary EPSP that occasionally caused the initiation of single action potentials. The second was a larger-amplitude, long-duration (presumably compound) EPSP that caused the motoneurones to fire a burst of high-frequency action potentials. This second type of EPSP activity was associated with spontaneous longitudinal contractions of the body in semi-intact preparations. Tactile stimulation of the skin of Lymnaea evoked EPSPs in the CM and DLM motoneurones and in some other identified cells. These EPSPs summated and usually caused the motoneurone to fire action potentials, thus activating the withdrawal response muscles and causing longitudinal contraction of the semi-intact animal. Stimulating different areas of the body wall demonstrated that there was considerable sensory convergence on the side of the body ipsilateral to stimulation, but less on the contralateral side. Photic (light off) stimulation of the skin of Lymnaea also initiated EPSPs in CM and DLM motoneurones and in some other identified cells in the central nervous system (CNS). Cutting central nerves demonstrated that the reception of this sensory input was mediated by dermal photoreceptors distributed throughout the epidermis. The activation of the CM and DLM motoneurones by sensory input of the modalities that normally cause the whole-body withdrawal of the intact animal demonstrates that these motoneurones have the appropriate electrophysiological properties for the role of mediating whole-body withdrawal.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amanda Avona ◽  
Theodore J Price ◽  
Gregory Dussor

Abstract Background Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, primary pain conditions in the lower parts of the body are less commonly associated with cephalic hypersensitivity. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations. Methods Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.


1976 ◽  
Vol 15 (05) ◽  
pp. 248-253
Author(s):  
A. K. Basu ◽  
S. K. Guha ◽  
B. N. Tandon ◽  
M. M. Gupta ◽  
M. ML. Rehani

SummaryThe conventional radioisotope scanner has been used as a whole body counter. The background index of the system is 10.9 counts per minute per ml of sodium iodide crystal. The sensitivity and derived sensitivity parameters have been evaluated and found to be suitable for clinical studies. The optimum parameters for a single detector at two positions above the lying subject have been obtained. It has been found that for the case of 131I measurement it is possible to assay a source located at any point in the body with coefficient of variation less than 5%. To add to the versatility, a fixed geometry for in-vitro counting of large samples has been obtained. The retention values obtained by the whole body counter have been found to correlate with those obtained by in-vitro assay of urine and stool after intravenous administration of 51Cr-albumin.


1987 ◽  
Vol 26 (05) ◽  
pp. 202-205 ◽  
Author(s):  
J. Fass ◽  
S. Truong ◽  
U. Büll ◽  
V. Schumpelick ◽  
R. Bares

Radioimmunoscintigraphy (RIS) with 111ln- and 131 I-labelled monoclonal anti bodies (MAbs) against CEA and/or CA 19-9 was performed in 83 patients with various gastrointestinal carcinomas. A total of 276 body regions could be examined. The results of planar scintigraphy and SPECT were compared intraindividually. Using 111 In-labelled MAbs the sensitivity of RIS was significantly improved by SPECT (88.9 vs. 52.4% with planar scintigraphy, p <0.01). For131 l-labelled MAbs the effect was smaller (83.9 vs. 65.6% with planar scintigraphy, n.s.). This finding can be explained by different kinetics and biodistribution of the used MAb preparations.111 In-labelled MAbs with long whole-body retention and rapid blood clearance reveal ideal qualities for SPECT; on the other hand, the short whole-body retention of131 l-labelled MAbs leads to small count rates and therefore long counting times that make delayed SPECT unsuitable in clinical practice


Author(s):  
I. V. Cheretaev ◽  
D. R. Khusainov ◽  
E. N. Chuyan ◽  
M. Yu. Ravaeva ◽  
A. N. Gusev ◽  
...  

The purpose of the review is to summarize current literature data and the results of our own research on the analgesic and anti-inflammatory effects of acetylsalicylic acid, as well as the physiological mechanisms underlying them. This acid is the most studied reference representative of salicylates, which is convenient to consider the physiological effects characteristic in general for this group of chemical and medicinal products. Acetylsalicylic acid has analgesic properties against thermal pain and pain caused by electrical stimuli, as well as a pronounced anti-inflammatory effect. The realization of these properties depends on the peculiarities of aspirin metabolism in the body, ion and synaptic mechanisms for controlling the functional state of the cell, neurotransmitter systems of the сentral nervous system, and mechanisms of peripheral and сentral analgesia. Analgesic properties of acetylsalicylic acid founded not only in normal, but also in ultra-small doses. Various physical and especially chemical factors significantly change their effects. This increases the interest in studying the analgesic activity of salicylates and their physiological mechanisms, since such studies can serve as a basis for creating new non-steroidal anti-inflammatory drugs with low toxicity and high safety for patients, and improve the strategy of their practical use. Currently, the most detailed study of the physiological mechanism of analgesic and anti-inflammatory action of aspirin and its main metabolite – salicylic acid. However, it should be note that despite the abundance of existing data obtained in scientific studies of the effects of aspirin and its practical use, there are a number of unexplained aspects of the action of this drug, the mechanism of which has not yet been deciphered. The continuing interest in the effects and mechanisms of action of this drug and in connection with the expansion of its use evidenced by a consistently high number of scientific publications on aspirin in the most famous foreign and domestic publications. At the same time, the number of publications about aspirin is an order of magnitude higher than about any other drug known to humanity.


Sign in / Sign up

Export Citation Format

Share Document