scholarly journals Interleukin-6 induces spatially dependent whole-body hypersensitivity in rats: implications for extracephalic hypersensitivity in migraine

Author(s):  
Amanda Avona ◽  
Theodore J Price ◽  
Gregory Dussor

Abstract Background: Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, pain conditions in the lower parts of the body do not generally lead to cutaneous hypersensitivity in the head. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations.Methods: Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results: Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions : Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amanda Avona ◽  
Theodore J Price ◽  
Gregory Dussor

Abstract Background Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, primary pain conditions in the lower parts of the body are less commonly associated with cephalic hypersensitivity. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations. Methods Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.


2013 ◽  
Vol 29 (1) ◽  
pp. 12-22 ◽  
Author(s):  
Heon-Jeong Kim ◽  
Bernard J. Martin

Simulation of human movements is an essential component for proactive ergonomic analysis and biomechanical model development (Chaffin, 2001). Most studies on reach kinematics have described human movements in a static environment, however the models derived from these studies cannot be applied to the analysis of human reach movements in vibratory environments such as in-vehicle operations. This study analyzes three-dimensional joint kinematics of the upper extremity in reach movements performed in static and specific vibratory conditions and investigates vibration transmission to shoulder, elbow, and hand along the body path during pointing tasks. Thirteen seated subjects performed reach movements to five target directions distributed in their right hemisphere. The results show similarities in the characteristics of movement patterns and reach trajectories of upper body segments for static and dynamic environments. In addition, vibration transmission through upper body segments is affected by vibration frequency, direction, and location of the target to be reached. Similarities in the pattern of movement trajectories revealed by filtering vibration-induced oscillations indicate that coordination strategy may not be drastically different in static and vibratory environments. This finding may facilitate the development of active biodynamic models to predict human performance and behavior under whole body vibration exposure.


2014 ◽  
Vol 42 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Matteo Zago ◽  
Andrea Francesco Motta ◽  
Andrea Mapelli ◽  
Isabella Annoni ◽  
Christel Galvani ◽  
...  

Abstract Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001), normalized CoM height was 1.3% lower (p<0.001) and CoM velocity 10% higher (p<0.01); foot and shank velocities were about 5% higher (p<0.01); arms were more abducted (p<0.01); shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference). We concluded that differences in motor control between preferred and non-preferred leg kicks exist, particularly in the movement velocity and upper body kinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior


1979 ◽  
Vol 07 (03) ◽  
pp. 241-252 ◽  
Author(s):  
Toshikatsu Kitade ◽  
Masayoshi Hyodo

Six ear acupuncture points, one non-acupuncture ear point, and the body locus Ho-Ku (LI-4) were electrically stimulated in order to compare the effects of stimulation on the body's pain threshold at selected loci on various points on the body by measurement with a radiation heat-type Pain Meter on 5 subjects. The ear points, with the exception of the non-acupuncture ear point, were found to be effective even in peripheral body regions in varying degrees. Ear stimulation did not increase the threshold as rapidly as Ho-Ku. In all cases where the pain threshold was raised, the effect persisted after electrical stimulation had stopped.


The object of this enquiry is to find out how much heat can be gained, or cold lost from the body, by the local cooling or warming of a small part, by cooling the hands in a stream of cold water, warming the feet in a hot foot­ bath, or by a foot-warmer. In order to secure the beneficial effect of open windows, the breathing of cool air of low-vapour tension, and stimulation of body metabolism by such air ventilating the clothed and naked parts of the skin, the general heating of rooms by hot-water coils might be replaced by small heaters kept a few degrees above body temperature and locally applied to each individual, and each under the individual’s control. Electric heaters have been used by aeroplanists placed beneath their outer garments. One of us(l) recently published results showing that heating or cooling the hands can effectively heat or cool the whole body. We record further experiments of a like nature.


2005 ◽  
Vol 99 (5) ◽  
pp. 1958-1964 ◽  
Author(s):  
Gordon G. Giesbrecht ◽  
Tamara L. Lockhart ◽  
Gerald K. Bristow ◽  
Allan M. Steinman

Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34°C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1°C/h) compared with head-out conditions (0.7°C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6°C/h with the head out to 5.0°C/h with the dorsal head and upper chest immersed ( P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (∼10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.


2019 ◽  
Vol 31 (4) ◽  
pp. 578-594
Author(s):  
Shitan Wang ◽  
Xiuhua Wang ◽  
Yunyi Wang

Purpose The purpose of this paper is to determine the effects of clothing ease and body postures on the size and distribution of the air gap as well as the body coverage with the clothing. Design/methodology/approach Visual and quantitative analyses were conducted using a 3D body scanner and Geomagic Software. The air gap size and clothing area factor (fcl) in three test coverall and seven selected postures were calculated and compared. Findings The results indicated that both the clothing ease and body postures had a strong effect on the air gap and clothing coverage, especially the more complex the postures, the wider the range of influence. Nevertheless, these effects varied over body regions, being stronger at the lower body than the upper body. The air gap size at the left side of the body was generally larger than the right side. It was also found that the clothing coverage was linearly correlated with the air gap size and could be employed as an indicator to evaluate clothing protective capabilities. Practical implications The findings suggested that greater attention should be paid to the protection and flexibility at the lower body and asymmetrical distribution of the air gap should be considered in the future air gap modeling. Originality/value The outcomes provided useful information to improve the protective clothing and develop more realistic air gap models to simulate the heat and mass transfer.


Author(s):  
Daniel Grindle ◽  
Wansoo Pak ◽  
Berkan Guleyupoglu ◽  
Bharath Koya ◽  
F Scott Gayzik ◽  
...  

The pedestrian is one of the most vulnerable road users and comprises approximately 23% of the road crash-related fatalities in the world. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests are used in regulations. These tests provide insight but cannot characterize the complex vehicle-pedestrian interaction. The main purpose of this study was to develop and validate a detailed pedestrian Finite Element (FE) model corresponding to a 50th percentile male to predict CPC induced injuries. The model geometry was reconstructed using a multi-modality protocol from medical images and exterior scan data corresponding to a mid-sized male volunteer. To investigate injury response, this model included internal organs, muscles and vessels. The lower extremity, shoulder and upper body of the model were validated against Post Mortem Human Surrogate (PMHS) test data in valgus bending, and lateral/anterior-lateral blunt impacts, respectively. The whole-body pedestrian model was validated in CPC simulations using a mid-sized sedan and simplified generic vehicles bucks and previously unpublished PMHS coronal knee angle data. In the component validations, the responses of the FE model were mostly within PMHS test corridors and in whole body validations the kinematic and injury responses predicted by the model showed similar trends to PMHS test data. Overall, the detailed model showed higher biofidelity, especially in the upper body regions, compared to a previously reported simplified pedestrian model, which recommends using it in future pedestrian automotive safety research.


2022 ◽  
Vol 53 (5) ◽  
Author(s):  
Milivoje Urošević ◽  
Darko Drobnjak ◽  
Radomir Mandić ◽  
Ružica Trailović ◽  
Goran Stanišić ◽  
...  

The domestic donkey (Equus asinus) has a very specific body construction. It is built in such a way that the mutual relationship of individual body regions enables great work endurance. The fact that this breed of domestic animal originates from wild ancestors, originated and developed in Africa, clearly shows that the breed developed in harsh climatic and ecological conditions that conditioned the appropriate biological response. The biostatic model causes the biodynamic effect, i.e., the production of biokinetic energy. Movement forwards occurs as a consequence of the creation of biokinetic energy and its transfer from the back part of the body, where it originates, to the front part of the body. The most efficient transfer of biokinetic energy is enabled by the existence of an appropriate biostatic model, i.e., body structure, and this leads to a biodynamic effect that is defined as a movement. For the process of movement, the muscles must be well developed. Two muscle groups are distinguished; a) pelvic muscles, b) external hip and croup joint muscles. The basic lever for the transfer of biokinetic energy is the femur. The generated energy is transferred from the hip joint to the thigh muscles, which shortening leads to the movement of the hind leg forward, its leaning against the ground and pushing the whole body forward. The generated biokinetic energy cause the bio kinematic effect, which is characterized as a movement.


2019 ◽  
Author(s):  
Hendrik Reimann ◽  
Tyler Fettrow ◽  
David Grenet ◽  
Elizabeth D. Thompson ◽  
John J. Jeka

AbstractThe human body is mechanically unstable during walking. Maintaining upright stability requires constant regulation of muscle force by the central nervous system to push against the ground and move the body mass in the desired way. Activation of muscles in the lower body in response to sensory or mechanical perturbations during walking is usually highly phase-dependent, because the effect any specific muscle force has on the body movement depends upon the body configuration. Yet the resulting movement patterns of the upper body after the same perturbations are largely phase-independent. This is puzzling, because any change of upper-body movement must be generated by parts of the lower body pushing against the ground. How do phase-dependent muscle activation patterns along the lower body generate phase-independent movement patterns of the upper body? We hypothesize that in response to a perceived threat to balance, the nervous system generates a functional response by pushing against the ground in any way possible with the current body configuration. This predicts that the changes in the ground reaction force patterns following a balance perturbation should be phase-independent. Here we test this hypothesis by disturbing upright balance using Galvanic vestibular stimulation at three different points in the gait cycle. We measure the resulting changes in whole-body center of mass movement and the location of the center of pressure of the ground reaction force. We find that the whole-body balance response is not phase-independent as expected: balance responses are initiated faster and are smaller following a disturbance late in the gait cycle. Somewhat paradoxically, the initial center of pressure changes are larger for perturbations late in the gait cycle. The onset of the center of pressure changes however, does not depend on the phase of the perturbation. The results partially support our hypothesis of a phase-independent functional balance response underlying the phase-dependent recruitment of different balance mechanisms at different points of the gait cycle. We conclude that the central nervous system recruits any available mechanism to push against the ground to maintain balance as fast as possible in response to a perturbation, but the different mechanisms do not have equal strength.


Sign in / Sign up

Export Citation Format

Share Document