Energetic Cost of Running with different Muscle Temperatures in Savannah MOnitor Lizards

1982 ◽  
Vol 99 (1) ◽  
pp. 269-277
Author(s):  
LAWRENCE C. ROME

The purpose of this study was to determine whether the energetic cost of locomotion was independent of muscle temperature, or if it tripled with a 10 °C increase in temperature, like the cost of generating isometric force in isolated muscle preparations. For a given running speed of Savannah Monitor lizards, the energetic cost of locomotion (the difference between running and resting metabolism) was the same when muscle temperature was 28.5 °C as when it was 38 °C. It was also found that stride frequency and posture did not change with temperature, indicating that the average force exerted by the lizards' muscles during locomotion at the two temperatures was the same. This suggests that the cost of generating force in vivo is independent of temperature. Several possible explanations of the apparent difference between in vivo and in vitro muscle energetics are discussed.

1988 ◽  
Vol 138 (1) ◽  
pp. 301-318 ◽  
Author(s):  
N. C. Heglund ◽  
C. R. Taylor

In this study we investigate how speed and stride frequency change with body size. We use this information to define ‘equivalent speeds’ for animals of different size and to explore the factors underlying the six-fold difference in mass-specific energy cost of locomotion between mouse- and horse-sized animals at these speeds. Speeds and stride frequencies within a trot and a gallop were measured on a treadmill in 16 species of wild and domestic quadrupeds, ranging in body size from 30 g mice to 200 kg horses. We found that the minimum, preferred and maximum sustained speeds within a trot and a gallop all change in the same rather dramatic manner with body size, differing by nine-fold between mice and horses (i.e. all three speeds scale with about the 0.2 power of body mass). Although the absolute speeds differ greatly, the maximum sustainable speed was about 2.6-fold greater than the minimum within a trot, and 2.1-fold greater within a gallop. The frequencies used to sustain the equivalent speeds (with the exception of the minimum trotting speed) scale with about the same factor, the −0.15 power of body mass. Combining this speed and frequency data with previously published data on the energetic cost of locomotion, we find that the mass-specific energetic cost of locomotion is almost directly proportional to the stride frequency used to sustain a constant speed at all the equivalent speeds within a trot and a gallop, except for the minimum trotting speed (where it changes by a factor of two over the size range of animals studied). Thus the energy cost per kilogram per stride at five of the six equivalent speeds is about the same for all animals, independent of body size, but increases with speed: 5.0 J kg-1 stride-1 at the preferred trotting speed; 5.3 J kg-1 stride-1 at the trot-gallop transition speed; 7.5 J kg-1 stride-1 at the preferred galloping speed; and 9.4 J kg-1 stride-1 at the maximum sustained galloping speed. The cost of locomotion is determined primarily by the cost of activating muscles and of generating a unit of force for a unit of time. Our data show that both these costs increase directly with the stride frequency used at equivalent speeds by different-sized animals. The increase in cost per stride with muscles (necessitating higher muscle forces for the same ground reaction force) as stride length increases both in the trot and in the gallop.


1990 ◽  
Vol 149 (1) ◽  
pp. 307-317 ◽  
Author(s):  
R. J. Full ◽  
A. Tullis

Small animals use more metabolic energy per unit mass than large animals to run on a level surface. If the cost to lift one gram of mass one vertical meter is constant, small animals should require proportionally smaller increases in metabolic cost to run uphill. To test this hypothesis on very small animals possessing an exceptional capacity for ascending steep gradients, we measured the metabolic cost of locomotion in the cockroach, Periplaneta americana, running at angles of 0, 45 and 90 degrees to the horizontal. Resting oxygen consumption (VO2rest) was not affected by incline angle. Steady-state oxygen consumption (VO2ss) increased linearly with speed at all angles of ascent. The minimum cost of locomotion (the slope of the VO2ss versus speed function) increased with increasing angle of ascent. The minimum cost of locomotion on 45 and 90 degrees inclines was two and three times greater, respectively, than the cost during horizontal running. The cockroach's metabolic cost of ascent greatly exceeds that predicted from the hypothesis of a constant efficiency for vertical work. Variations in stride frequency and contact time cannot account for the high metabolic cost, because they were independent of incline angle. An increase in the metabolic cost or amount of force production may best explain the increase in metabolic cost. Small animals, such as P. americana, can easily scale vertical surfaces, but the energetic cost is considerable.


1995 ◽  
Vol 198 (3) ◽  
pp. 629-632 ◽  
Author(s):  
V A Langman ◽  
T J Roberts ◽  
J Black ◽  
G M Maloiy ◽  
N C Heglund ◽  
...  

Large animals have a much better fuel economy than small ones, both when they rest and when they run. At rest, each gram of tissue of the largest land animal, the African elephant, consumes metabolic energy at 1/20 the rate of a mouse; using existing allometric relationships, we calculate that it should be able to carry 1 g of its tissue (or a load) for 1 km at 1/40 the cost for a mouse. These relationships between energetics and size are so consistent that they have been characterized as biological laws. The elephant has massive legs and lumbers along awkwardly, suggesting that it might expend more energy to move about than other animals. We find, however, that its energetic cost of locomotion is predicted remarkably well by the allometric relationships and is the lowest recorded for any living land animal.


1993 ◽  
Vol 174 (1) ◽  
pp. 81-95
Author(s):  
R V Baudinette ◽  
E A Halpern ◽  
D S Hinds

In the marsupial, the potoroo, multiple regression analysis shows that ambient temperature makes a minor (2%) contribution towards variation in oxygen consumption with speed. This suggests that the heat generated during running is substituted for heat which would otherwise have to be generated for temperature regulation. Maximum levels of oxygen consumption are also temperature-independent over the range 5-25 degrees C, but plasma lactate concentrations at the conclusion of exercise significantly increase with ambient temperature. Adult potoroos show a linear increase in oxygen consumption with speed, and multiple regression indicates that the most significant factor affecting energy use during running is stride length. Juvenile potoroos have an incremental cost of locomotion about 40% lower than that predicted on the basis of body mass. The smaller animals meet the demands of increasing speed by increasing stride length rather than stride frequency, as would be expected in a smaller species. Our results show that juvenile potoroos diverge significantly from models based only on adult animals in incremental changes in stride frequency, length and the cost of transport, suggesting that they are not simply scaled-down adults.


1990 ◽  
Vol 154 (1) ◽  
pp. 287-303 ◽  
Author(s):  
K. Steudel

Previous studies have shown that large animals have systematically lower mass-specific costs of locomotion than do smaller animals, in spite of there being no demonstrable difference between them in the mass-specific mechanical work of locomotion. Larger animals are somehow much more efficient at converting metabolic energy to mechanical work. The present study analyzes how this decoupling of work and cost might occur. The experimental design employs limb-loaded and back-loaded dogs and allows the energetic cost of locomotion to be partitioned between that used to move the center of mass (external work) and that used to move the limbs relative to the center of mass (internal work). These costs were measured in three dogs moving at four speeds. Increases in the cost of external work with speed parallel increases in the amount of external work based on data from previous studies. However, increases in the cost of internal work with speed are much less (less than 50%) than the increase in internal work itself over the speeds examined. Furthermore, the cost of internal work increases linearly with speed, whereas internal work itself increases as a power function of speed. It is suggested that this decoupling results from an increase with speed in the extent to which the internal work of locomotion is powered by non-metabolic means, such as elastic strain energy and transfer of energy within and between body segments.


2013 ◽  
Vol 37 (4) ◽  
pp. 377-383 ◽  
Author(s):  
Stan L. Lindstedt ◽  
Patrick M. Mineo ◽  
Paul J. Schaeffer

This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not “meticulous” in attention to detail. First, using respirometry, students measure the energetic cost of hopping at a “preferred” hop frequency. This is followed by hopping at an imposed frequency half of the preferred. By measuring the O2 uptake and work done with each hop, students calculate mechanical efficiency. Lessons learned from this laboratory include 1) that the metabolic cost per hop at half of the preferred frequency is nearly double the cost at the preferred frequency; 2) that when a person is forced to hop at half of their preferred frequency, the mechanical efficiency is nearly that predicted for muscle but is much higher at the preferred frequency; 3) that the preferred hop frequency is strongly body size dependent; and 4) that the hop frequency of a human is nearly identical to the galloping frequency predicted for a quadruped of our size. Together, these exercises demonstrate that humans store and recover elastic recoil potential energy when hopping but that energetic savings are highly frequency dependent. This stride frequency is dependent on body size such that frequency is likely chosen to maximize this function. Finally, by requiring students to make quantitative solutions using appropriate units and dimensions of the physical variables, these exercises sharpen analytic and quantitative skills.


1983 ◽  
Vol 244 (1) ◽  
pp. C100-C109 ◽  
Author(s):  
L. C. Rome ◽  
M. J. Kushmerick

The energetic cost of generating isometric force in isolated frog muscle was examined at 10, 20, and 30 degrees C. Recovery O2 consumption (delta O2) and recovery lactate production (delta Lact) were measured under conditions in which O2 was not limiting metabolism. Both increased linearly with the force-time integral (integral of Fdt) generated by the muscle. The slopes of the regression equations for both delta O2 and delta Lact as a function of integral of Fdt increased with increasing temperature with a temperature coefficient (Q10) near 3. Total high-energy phosphate resynthesis from recovery metabolism was calculated by scaling the delta O2 regression equation and the delta Lact regression equation into equivalent ATP units and summing them. This total recovery metabolism was modeled as the sum of two components, a "cost of maintaining force" (slope of the equation) and a saturable "start up cost" (intercept of the equation). The cost of maintaining force increased with temperature with a Q10 near 3 over the whole temperature range, whereas the start up cost was nearly independent of temperature between 0 and 20 degrees C and fell to near zero at 30 degrees C. Delta O2 measurements from a series of tetani given in rapid succession showed that for contractions subsequent to the first, no start up cost was incurred and that the "cost of generating force" for these contractions was equal to the slope of the regression line for single tetani. The practical consequence of these facts is that, in series of tetani, the cost of generating force increases with a Q10 of 3.


2010 ◽  
Vol 298 (3) ◽  
pp. R729-R739 ◽  
Author(s):  
Michael A. Tevald ◽  
Stephen A. Foulis ◽  
Ian R. Lanza ◽  
Jane A. Kent-Braun

Recent studies suggest that the cost of muscle contraction may be reduced in old age, which could be an important mediator of age-related differences in muscle fatigue under some circumstances. We used phosphorus magnetic resonance spectroscopy and electrically elicited contractions to examine the energetic cost of ankle dorsiflexion in 9 young (Y; 26 ± 3.8 yr; mean ± SD) and 9 older healthy men (O; 72 ± 4.6). We hypothesized that the energy cost of twitch and tetanic contractions would be lower in O and that this difference would be greater during tetanic contractions at f50 (frequency at 50% of peak force from force-frequency relationship) than at 25 Hz. The energy costs of a twitch (O = 0.13 ± 0.04 mM ATP/twitch, Y = 0.18 ± 0.06; P = 0.045) and a 60-s tetanus at 25 Hz (O = 1.5 ± 0.4 mM ATP/s, Y = 2.0 ± 0.2; P = 0.01) were 27% and 26% lower in O, respectively, while the respective force·time integrals were not different. In contrast, energy cost during a 90-s tetanus at f50 (O = 10.9 ± 2.0 Hz, Y = 14.8 ± 2.1 Hz; P = 0.002) was 49% lower in O (1.0 ± 0.2 mM ATP/s) compared with Y (1.9 ± 0.2; P < 0.001). Y had greater force potentiation during the f50 protocol, which accounted for the greater age difference in energy cost at f50 compared with 25 Hz. These results provide novel evidence of an age-related difference in human contractile energy cost in vivo and suggest that intramuscular changes contribute to the lower cost of contraction in older muscle. This difference in energetics may provide an important mechanism for the enhanced fatigue resistance often observed in older individuals.


1990 ◽  
Vol 154 (1) ◽  
pp. 273-285 ◽  
Author(s):  
K. Steudel

Does limb design influence the cost of locomotion in quadrupedal mammals? If not, morphologists must dismiss the economy of locomotion from consideration when assessing the adaptive factors shaping limb structure. Several studies have recently used externally applied loads to demonstrate a relationship between limb mass distribution and energy costs in human subjects. It is not clear whether a similar correlation would hold for quadrupeds, given their very different gaits. The present study addresses this question by measuring the rate of oxygen consumption in domestic dogs running on a treadmill with mass added either to the limbs or to the back. Trials with no additional mass were used as a control. The use of externally applied loads has the advantage of allowing limb mass to be altered in a system in which other aspects of physiology that might influence cost of locomotion are held constant. The cost of adding mass to the limbs in dogs was found to be significantly greater than that of adding it at the center of mass. Limb mass distribution does affect the cost of locomotion in quadrupeds. A comparison of the results from a variety of studies in which the energetic cost of adding external loads has been measured in animals across a wide size range suggests a qualitative difference in the factors determining the cost of locomotion in large and small animals.


1992 ◽  
Vol 168 (1) ◽  
pp. 243-252 ◽  
Author(s):  
L. C. Rome

To reconcile the scaling of the mechanics and energetics of locomotion to recent data on the scaling of the mechanics of muscle fibres, I have extended the theory of Taylor and colleagues that the energetic cost of locomotion is determined by the cost of generating force by the fibres. By assuming (1) that the cost of generating force in a fibre is proportional to V(max) (maximum velocity of shortening) and (2) that, at physiologically equivalent speeds, animals of different body sizes recruit the same fibre types, this extension quantitatively predicts the scaling of the energetics of locomotion, as well as other observations, from the scaling of V(max) of the muscle fibres. First, the energetic cost of locomotion at physiologically equivalent speeds scales with Mb-0.16, where Mb is body mass, as does V(max) of a given fibre type. However, the energetic cost at absolute speeds (cost of transport) scales with Mb-0.30, because small animals must compress their recruitment order into a narrower speed range and, hence, recruit faster muscle fibre types at a given running speed. Thus, it costs more for small animals to move 1 kg of their body mass 1 km not only because a given muscle fibre type from a small animal costs more to generate force than from a large one, but also because small animals recruit faster fibre types at a given absolute running speed. In addition, this analysis provides evidence that V(max) scales similarly to 1/tc (where tc is foot contact time) and muscle shortening velocity (V), in agreement with recent models. Finally, this extension predicts that, at physiologically equivalent speeds, the weight-specific energetic cost per step is independent of body size, as has been found empirically.


Sign in / Sign up

Export Citation Format

Share Document