Substrate stress concentrations in bonded lap joints

1998 ◽  
Vol 33 (5) ◽  
pp. 331-346 ◽  
Author(s):  
C H Wang ◽  
M Heller ◽  
L R F Rose

A method based on the successive boundary stress correction approach is presented for the determination of the stress concentration in substrates of adhesively bonded joints with square edges or spew fillets at the ends of the overlap. The emphasis is given to developing an estimate of the stress elevation at the end of a bonded joint while the issue of corner singularity at the substrate-adhesive interface is not addressed in detail. It is shown that the adhesive shear stress which acts on the substrates is the main cause of the stress concentration; the adhesive peel stress has little effect. To circumvent the deficiencies of existing bonded joint theories which generally predict a maximum adhesive shear stress at the ends of the adhesive layer, an eigenfunction solution has been derived for the shear stress distribution near the ends of the overlap. Based on the improved adhesive shear stress solution presented here, the stress concentration determined from the present theory is found to be in good agreement with finite element results.

2010 ◽  
Vol 139-141 ◽  
pp. 986-989 ◽  
Author(s):  
Hai Long Zhao ◽  
Zong Zhan Gao ◽  
Zhu Feng Yue ◽  
Zhi Feng Jiang

The stress distribution of adhesively-bonded single lap joints under tensile shear loading is analyzed using 2-dimensional elastic-plastic finite element method (FEM). Special attentions have been put on the influence of void in adhesive on the stress distribution of adhesively-bonded joints. The results show that the stress concentration of the void is less than that of the end part of the joints when adhesive layer’s deformation was in the range of elastic. Moreover, the influence of the void on the stress distribution becomes less when the void moving from the end-part to the middle. The stress concentration becomes larger and the stress distribution of adhesive’s mid-thickness region becomes flatter when adhesive layer has biggish plastic deformation. Finite element results show an agreement with the theoretical results.


2013 ◽  
Vol 467 ◽  
pp. 332-337
Author(s):  
Xiao Cong He

This paper describes some finite element combinations to analyse the mechanical behaviour of bonded joints. In finite element models five layers of solid elements were used across the adhesive layer in order to increase the accuracy of the results. The finite elements were refined gradually in steps from adherends to adhesive layer. In these models, most of the adherends and adhesive were modeled using solid brick elements but some solid triangular prism elements were used for a smooth transition. Comparisons are performed between different types of first-order element combinations in order to find a suitable model to predict the mechanical behaviour of adhesively bonded joints.


Author(s):  
Emad Mazhari ◽  
Sayed A. Nassar

In this study, the Fickian diffusion formulation is extended to the adhesive layer of a single lap joint (SLJ) model, in order to develop a coupled peel and shear stress-diffusion model. Constitutive equations are formulated for shear and peel stresses in terms of adhesive material properties that are time- and location-dependent. Numerical solution is provided for the effect of diffusion on shear and peel stresses distribution. Detailed discussion of the results is presented.


2011 ◽  
Vol 189-193 ◽  
pp. 3427-3430
Author(s):  
Xiao Cong He

This paper deals with the stress distribution in adhesively bonded joints with rubbery adhesives. The 3-D finite element analysis (FEA) software was used to model the joint and predict the stress distribution along the whole joint. The FEA results indicated that there are stress discontinuities existing in the stress distribution within the adhesive layer and adherends at the lower interface and the upper interface of the boded section for most of the stress components. The FEA results also show that the stress field in the whole joint is dominated by the normal stresses components S11, S33 and the shear stress component S13. The features and variations of these critical stresses components are discussed.


2016 ◽  
Vol 83 (10) ◽  
Author(s):  
Sayed A. Nassar ◽  
Emad Mazhari

In this study, a coupled shear stress-diffusion model is developed for the analysis of adhesively bonded single lap joints (SLJs) by applying Fickian diffusion model to the adhesive layer. Differential equations of equilibrium are formulated in terms of adhesive material properties that are time and location dependent. By invoking a Volkersen approach on the equilibrium equations, a shear stress differential equation is formulated and numerically solved. Several scenarios are considered for investigating the effect of diffusion on shear stress distribution in adhesively bonded SLJs. Detailed discussion of the results is presented.


2017 ◽  
Vol 754 ◽  
pp. 252-255
Author(s):  
S.M.J. Razavi ◽  
F. Berto

In the current paper, the geometric and material parameters of metal fibers utilized for strengthening adhesively bonded single lap joints under flexural loading were investigated by using experimental investigations. According to the test results, incorporating metal fibers in the adhesive layer of a bonded joint can have a significant impact on the flexural load bearing of the joint. The distance between the fibers and also the fibers orientation were considered as the key parameters in this research. It was concluded that the load bearing of the joint can be improved by reducing the distance between the fibers and the highest failure loads were obtained for the joints reinforced by fibers in the longitudinal direction.


Author(s):  
Sayed A. Nassar ◽  
Emad Mazhari

In this study, a coupled shear stress-diffusion model is developed for the analysis of adhesively bonded single lap joints by applying Fickian diffusion model to the adhesive layer. Differential equations of equilibrium are formulated in terms of adhesive material properties that are time and location-dependent. By invoking a Volkersen approach on the equilibrium equations, a shear stress differential equation is formulated, and numerically solved. Several scenarios are considered for investigating the effect of diffusion on shear stress distribution in adhesively bonded single lap joints. Detailed discussion of the results is presented.


2014 ◽  
Vol 893 ◽  
pp. 690-693 ◽  
Author(s):  
Xiao Cong He ◽  
Yu Qi Wang

The aim of this work is to investigate the shear stress distributions across the adhesive layer thickness in single-lap adhesively bonded joint. The shear stress distributions of a single-lap adhesively bonded joint have been investigated using the three-dimensional linear static and non-linear quasi-static finite element method. The analysis results indicate that there are significant differences between the linear static and non-linear quasi-static analyses. The results also show that the maximum value of the shear stress component S13occurs at the centre line while the maximum of the shear stress components S12and S23occur near or at the left-rear corner of the adhesive layer.


2012 ◽  
Vol 217-219 ◽  
pp. 2154-2158 ◽  
Author(s):  
Jian Guang Zhang ◽  
Zhen Zhang ◽  
De Quan Ma ◽  
Yong Hai Wen ◽  
Shao Bo Gong ◽  
...  

The response of adhesively bonded lap-joint under transverse impact was investigated by means of DYTRAN software. A finite element model was developed based on cohesive failure in the adhesive layer of the joint. It was found that transverse impact results in shear and peel stress concentration in the adhesive due to the considerable deflection of the joint. The stress distribution in the adhesive layer was asymmetric along the overlap length direction. The peel stress varies from tensile to compressive from one side to the other. Two cracks initiated at two sides of the adhesive layer were observed before the failure of the joint.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
H. F. M. de Queiroz ◽  
M. D. Banea ◽  
D. K. K. Cavalcanti

AbstractNatural fibre-reinforced composites have attracted a great deal of attention by the automotive industry mainly due to their sustainable characteristics and low cost. The use of sustainable composites is expected to continuously increase in this area as the cost and weight of vehicles could be partially reduced by replacing glass fibre composites and aluminium with natural fibre composites. Adhesive bonding is the preferred joining method for composites and is increasingly used in the automotive industry. However, the literature on natural fibre reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to investigate experimentally adhesively bonded joints made of natural, synthetic and interlaminar hybrid fibre-reinforced polymer composites. The effect of the number of the interlaminar synthetic layers required in order to match the bonded joint efficiency of a fully synthetic GFRP bonded joint was studied. It was found that the failure load of the hybrid jute/glass adherend joints increased by increasing the number of external synthetic layers (i.e. the failure load of hybrid 3-layer joint increased by 28.6% compared to hybrid 2-layer joint) and reached the pure synthetic adherends joints efficiency due to the optimum compromise between the adherend material property (i.e. stiffness and strength) and a diminished bondline peel stress state.


Sign in / Sign up

Export Citation Format

Share Document