Formation of the breaking surface of alumina in laser cutting with a controlled fracture technique

Author(s):  
C-H Tsai ◽  
C-J Chen

Laser cutting using the controlled fracture technique is based on the thermal breaking principle. The laser beam is applied to the surface of a ceramic substrate; the substrate is then controllably separated along the moving path of the laser beam. The fractography and cutting surface formation are studied in this work. It is found that the breaking surface can be divided into four regions. The first region is the laser evaporation region produced by the heat concentration. The second region is the columnar grain region produced by resolidification of the melted material. The third region is the intergranular fracture region produced by anisotropic thermal expansion. The fourth region is the transgranular fracture region characterized by unstable fractures. These experiments are conducted on alumina ceramics using a CO2 laser. The fracture mechanism is analysed using stress analysis and fractographic observation. The tensile stress generated on the surface due to the laser beam separates the material along its path. The effects of the cutting parameters such as the laser power, cutting speed, laser spot diameter and specimen geometry on the machining quality are obtained from the experimental analysis. It is concluded that the best cutting quality is obtained using a large laser spot size.

2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


2009 ◽  
Vol 83-86 ◽  
pp. 793-800 ◽  
Author(s):  
M.M. Noor ◽  
K. Kadirgama ◽  
M.M. Rahman ◽  
N.M. Zuki N.M. ◽  
Mohd Ruzaimi Mat Rejab ◽  
...  

This paper develops the predicting model on surface roughness of laser beam cutting (LBC) for acrylic sheets. Box-Behnken design based on Response surface method was used to predict the effect of laser cutting parameters including the power requirement, cutting speed and tip distance on surface roughness during the machining. Response surface method (RSM) was used to minimize the number of experiments. It can be seen that from the experimental results, the effects of the laser cutting parameters with the surface roughness were investigated. It was found that the surface roughness is significantly affected by the tip distance followed by the power requirement and cutting speed. Some defects were found in microstructure such as burning, melting and wavy surface. This simulation gain more understanding of the surface roughness distribution in laser cutting. The developed model is suitable to be used in the range of (power 90 to 95, cutting speed 700 to 1100 and tip distance 3 to 9) to predict surface roughness.


2003 ◽  
Vol 125 (3) ◽  
pp. 519-528 ◽  
Author(s):  
Chwan-Huei Tsai ◽  
Chi-Sheng Liou

Laser cutting using the controlled fracture technique has great potential to be used for the machining of brittle materials. In this technique, the applied laser energy produces a mechanical stress that causes the material to separate along the moving path of the laser beam. The material separation is similar to a crack extension and the fracture growth is controllable. The fracture mechanism of laser cutting with controlled fracture is studied in this paper. The temperature and stress distributions are obtained by using the finite element software ANSYS. The laser heat first induces compressive stress around the laser spot. After the passage of the laser beam, the compressive stress is relaxed, and then a residual tensile stress is induced, which makes the fracture grow from upper surface to lower surface of the substrate. The stable separation of the brittle material is due to the local residual tensile stress. However, if the tensile stress is distributed throughout the thickness around the crack tip, the crack will extend unstably. The experimental materials in this study are alumina ceramic and the laser source is CO2 laser. It is found that the crack propagation is non-uniform and the speed is variable during the cutting process. The relationships between laser power, cutting speed, diameter of laser spot, and specimen geometry are obtained from the experimental analysis, and the phenomena are also explained from the results of stress analysis.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici

Purpose The purpose of this study is to obtain strong materials with multiwall carbon nanotubes (MWCNTs) doped and investigate laser cut of MWCNTs also find the effect of the laser cutting parameters on composite materials. Design/methodology/approach The laminated composite plates were manufactured by using a vacuum infusion process. The mechanical properties of the composite materials produced were determined according to American Society for Testing and Materials (ASTM) D3039M, ASTM D3171, ASTM D 792 and ASTM D2583. A 130 Watts carbondioxide (CO2) laser cutting machine was used for drilling the two different composite plates with a thickness of 1.6–1.5 mm. Three variables were considered as process parameters including laser power (in three levels of 84.50, 104.00 and 127.40 W), cutting speed (in three levels of 4, 6, 8 mm/s) and 14 mm fixed focal position. Findings The fibers could not be cut due to insufficient melting in the experiments performed using 84.50 and 104.00 W laser power but the cutting was successfully completed when the laser power was 127.40 W. However, as the cutting speed increased, the contact time of the laser beam with the material decreased, so the kerf decreased, but the increased laser power created a thermal effect, causing an increase in hardness around the cutting surface. This increase was lower in MWCNTs doped composites compared to pure composites. It has been found that the addition of nanoparticles to layered glass fiber composite materials played an effective role in the strength of the material and affected the CO2 laser cutting quality. Originality/value This study is a unique study in which the CO2 laser cutting method of MWCNT-doped composite materials was investigated and the machinability without cutting errors, such as delamination, splitting, distortion and burring using the most suitable laser cutting parameters was revealed.


2020 ◽  
Vol 91 (12) ◽  
pp. 45-51
Author(s):  
Zbigniew Mirski ◽  
Jakub Kwiecień ◽  
Jan Hejna

The airbags are one of the most important element in the vehicle, they keep people safe during accident or collision. The materials which are used to produce airbags must comply with many rigorous requirementsThe main aspects pertain in the article are:‒ dependence between layout of fibre in the cutting material and the mechanic durability;‒ airbags match elements for laser cutting facilitation;‒ starts to create the laser emplacement for textiles cutting;‒ laser cutting parameters of airbags elements (parameters of laser beam, cutting speed, the number of cutting layers);‒ the influence of material quality for cutting effects;‒ cutting materials shape tolerance and their impact on the airbag’s functionality;‒ quality control of cutting elements and their separation.


2022 ◽  
Vol 73 ◽  
pp. 26-39
Author(s):  
Jordan S. Weaver ◽  
Jarred C. Heigel ◽  
Brandon M. Lane

Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1147 ◽  
Author(s):  
Sibalija ◽  
Petronic ◽  
Milovanovic

This paper presents an experimental study carried out on Nimonic 263 alloy sheets to determine the optimal combination of laser cutting control factors (assisted gas pressure, beam focus position, laser power, and cutting speed), with respect to multiple characteristics of the cut area. With the aim of designing laser cutting parameters that satisfy the specifications of multiple responses, an advanced multiresponse optimization methodology was used. After the processing of experimental data to develop the process measure using statistical methods, the functional relationship between cutting parameters and the process measure was determined by artificial neural networks (ANNs). Using the trained ANN model, particle swarm optimization (PSO) was employed to find the optimal values of laser cutting parameters. Since the effectiveness of PSO could be affected by its parameter tuning, the settings of PSO algorithm-specific parameters were analyzed in detail. The optimal laser cutting parameters proposed by PSO were implemented in the validation run, showing the superior cut characteristics produced by the optimized parameters and proving the efficacy of the suggested approach in practice. In particular, it is demonstrated that the quality of the Nimonic 263 cut area and the microstructure were significantly improved, as well as the mechanical characteristics.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2014 ◽  
Vol 939 ◽  
pp. 177-185
Author(s):  
Zhao Chi Chen ◽  
Liang Ju Pan

High powerCO2(Carbon Dioxide,CO2) laser cutting process not only attention to the type of material selected, the focus position of the laser beam and spot size (beam size) also plays an important role. In this paper, metal materials cutting through the wavelength of 10.6μm,CO2 laser with the optical path length compensation techniquewith output power 4000W. We compare different focus position and spot size for processing quality to discussing the use of a constant optical path length system to maintain the stability of the cross-section of the metal material after laser cutting.Optical path length compensation is used with ABCD Law in metal (steel) laser cutting processing an indispensable technology.Finally, we verify that the cross-section of the optical path length compensation under laser cutting in different processing location, thicknessof 16 mmsteel with laser power 4000W, and cutting speed 0.9 m/minconditions observed area 3*1.5 m2workingstagefor optical path length of 7, 8.5, 10 and 11.5 m,the steel ofcross-section appearance almost identical.


2015 ◽  
Vol 787 ◽  
pp. 460-464 ◽  
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
P. Kuppan

Inconel 718, a nickel based alloys, addressed as difficult to cut material because of hard carbide particle, hardness, work hardening and low thermal conductivity. Improving the machinability characteristics of nickel based alloys is a major anxiety in aircraft, space vehicle and other manufacturing fields. This paper presents an experimental investigation in Laser assisted turning of Inconel 718 to determine the effects of laser cutting parameters on cutting temperature and cutting forces. This nickel alloy has a material hardness at 48 HRC and machined with TICN/Al2O3/TiN tool. This is employed for the manufacture of helicopter rotor blades and cryogenic storage tanks. The experiments were conducted at One-Factor-at-a-Time.The effects of laser cutting parameters, namely cutting speed, feed rate, laser power and laser to work piece angle, on the cutting temperature and cutting force components, are critically analysed and the results are compared with unassisted machining of this alloy. The experiments are conducted by varying the cutting speed at three levels (50, 75, 100 m/min), feed rate (0.05, 0.075 0.1 mm/rev), laser power (1.25 kW, 1.5 kW, 1.75 kW) and at two level laser to work piece angle (60, 75°). At the optimal parametric combinationof laser power 1.5 kW with cutting speed of 75m/min, feed rate of 0.075 mm/min and laser to work piece angle 60°, the benefit of LAM was shown by 18%, 25% and 24% decrease in feed force (Fx), thrust force (Fy) and cutting force (Fz) as compared to those of the conventional machining. Examination of the machined surface hardness profiles showed no change under LAM and conventional machining.


Sign in / Sign up

Export Citation Format

Share Document