Simulation and experimental investigations for the patch near-field acoustical holography

Author(s):  
C Yang ◽  
J Chen ◽  
J Q Li ◽  
W F Xue

In order to reconstruct the sound field, the fast Fourier transform (FFT)-based near-field acoustical holography (NAH) demands that the measurement surface must extend to a region where the sound pressure decreases to a low level. This method is unfit for reconstructing the partial sound field in which the measurement aperture size is limited either by physical necessity or as a way of reducing the measurement cost. Statistically optimal NAH (SONAH) performs plane-to-plane calculations directly in the spatial domain, avoids all errors occurred in the FFT-based NAH and significantly increases the accuracy of the reconstruction of the partial sound field. In the present work, combined with the different regularization methods, SONAH is performed for reconstructing the partial sound field. The errors over the central and the peripheral sections of the reconstruction area are researched separately. Simulations and experiments show that SONAH is successful in reconstructing the partial sound field and the errors over the central sections are smaller than that over the peripheral sections. Experiments demonstrate that Tikhonov regularization in conjunction with Engl's criterion is suitable for the reconstruction of the practical sound field.

2021 ◽  
pp. 107754632110201
Author(s):  
Jin Mao ◽  
Jinfu Du ◽  
Kai Liu ◽  
Jiang Liu ◽  
Yahui Cui

Sound field separation based on near-field acoustical holography has been developed worldwide, but with the increase in the number of sound sources, traditional measurement methods and calculation methods will generate more workload. To reduce the number of measuring points and save calculation time, the sound field separation of multiple coherent sources with a single measurement surface is proposed. On the basis of separating two coherent sources with this method, the separation formula of more sources based on an equivalent source method is given. Through numerical simulation, the effects of the number of holographic surface measuring points, measuring distance, array shape, and equivalent source number on the calculation accuracy of the sound field separation were compared at different frequencies. The correctness and effectiveness of the sound field separation method with a single surface are verified by actual experiments.


2014 ◽  
Vol 599-601 ◽  
pp. 922-926
Author(s):  
Guo Liang Xu ◽  
Qi Wei He ◽  
Shao Chun Ding ◽  
Hai Bo Wan

To analyze effects of quay environment on the AUV radiated acoustic field test, the PNAH (PNAH: planar near-field acoustical holography) was used to simulate acoustic field. By simulating the free and non-free acoustic field and comparing amplitudes and angles of complex sound pressure, Analyze effects of quay wall and seabed reflection on the AUV radiated acoustic field test to determine the standard of quay wall and seabed environment which meets testing. The work would provide a certain reference for the AUV radiated acoustic field test.


2005 ◽  
Vol 127 (6) ◽  
pp. 542-546 ◽  
Author(s):  
Quan Wan ◽  
W. K. Jiang

The cyclostationary near field acoustic holography (NAH) technique is proposed to overcome the limitations of the current NAH in analyzing cyclostationary sound field. The proposed technique adopts the cyclic spectrum density as the reconstructed physical quantity, instead of the spectrum of sound pressure. Moreover, introducing the principal component analysis into the technique, a partial source decomposition procedure is suggested to decompose the sound field radiated by multiple sound sources into some incoherent partial fields. More information about cyclostationary sound field can be shown clearly on the hologram of the proposed technique than NAH can, which is validated by the simulation results.


Author(s):  
Yong Thung Cho ◽  
M J Roan ◽  
J S Bolton

Acoustical holography procedures make high-resolution visualization possible via estimation of the sound intensity on surfaces closer to the sources than the near-field measurement surface. Another source localization technique, beamforming, has been used to estimate the direction of arrival of sound from sources that typically lie in the far-field. However, little work has been done using beamforming as a visualization technique based on near-field measurements. As a result, the performance of beamforming and acoustical holography in terms of source resolution capabilities has not been directly compared when using near-field measurements. In this work, point source beamforming was used to visualize sources based on near-field measurements. Acoustic intensity estimated from beamformed pressure measurements was compared with the absolute intensity estimated using acoustical holography techniques. In addition to noise-free, anechoic simulations, cases of measurement pressure with random noise were generated and used to compare source resolution accuracy of acoustical holography and beamforming techniques in the presence of measurement noise. It was found that intensity estimated using acoustical holography provided the clearest image of sources when the measurement surface was conformal with the source geometry. However, sources can be resolved more accurately using near-field beamforming than acoustical holography at high frequencies when the sources are not located perfectly on a surface conformal with the measurement geometry.


2013 ◽  
Vol 716 ◽  
pp. 559-564
Author(s):  
Di Jia ◽  
Feng Hui Kang ◽  
Yi Na Wang

In order to study the acoustic environment of a ship sonar platform, near-field acoustic characteristic of a compound structure with plates & a cylindrical shell (CSPCS) subjected to sound excitation is researched based on numerical simulation. Influence of frequency and sound incident angle on acoustic environment of CSPCS are studied. Study shows that the sound pressure field distribution of CSPCS is complicated. Sound pressure would be strengthened and weakened in different locations when sound pressure uniformly incident into CSPCS. Result shows that the sound pressure distribution is highly dependent on frequency and incident angle. Sound pressure field is more evenly distributed when sound wave frequency is low. Study also shows that the incident angle has considerable influence on the sound field distribution of strengthened and weakened area.


2005 ◽  
Vol 54 (3) ◽  
pp. 1253 ◽  
Author(s):  
Li Wei-Bing ◽  
Chen Jian ◽  
Yu Fei ◽  
Bi Chuan-Xing ◽  
Chen Xin-Zhao

2020 ◽  
Vol 68 (6) ◽  
pp. 470-489
Author(s):  
Tongyang Shi ◽  
Weimin Thor ◽  
J. Stuart Bolton

To identify sound source locations and strength by using near-field acoustical holography (NAH), many microphones are generally required in order to span the source region and to ensure a sufficiently high spatial sampling rate. It is often the case that hundreds of microphones are needed, so such measurements are costly, which has limited the application of NAH in industrial settings. Recently, however, it has been shown that it is possible to accurately identify concentrated sound sources with a limited number of microphones based on compressive sampling theory. Here, the theory of the four NAH methods that were studied in the present work, that is, statistically optimized near-field acoustical holography (SONAH), wideband acoustical holography (WBH), l1-norm minimization, and a hybrid compressive sampling method, is briefly reviewed. Note that the latter three procedures incorporate elements of compressive sampling. Then, a simulation with one monopole as the sound source was conducted to illustrate some basic characteristics of these algorithms. In the experimental portion of the work, a multi-element loudspeaker was used as the sound source. A near-field intensity scan was conducted to measure both the true intensity spatial distribution and the sound power generated by the loudspeaker to provide a basis against which the values obtained from the holography reconstructions could be compared. The sound field was reconstructed by using both near- and far-field measurements, and the number of microphone measurements used to reconstruct the sound field was systematically decreased by increasing the spacing between microphones. Both in the simulation and experiment, the sound field was reconstructed by using the four NAH methods mentioned above. Then, the reconstruction results were comparedwith the measured intensity results in terms of spatial localization and sound power, and the benefits of the compressive sampling approach are illustrated.


2013 ◽  
Vol 631-632 ◽  
pp. 1318-1323
Author(s):  
Min Peng

The radiated sound field of rotating machinery or reciprocating machinery has a significant periodically time-variant nature. This is a kind of non-stationary sound field and called cyclostationary sound field. In the conventional planar near-field acoustic holography(PNAH), this kind of sound field is treated as stationary field, so the information relating to the change of frequency with time will be loss inevitably. In this article, the cyclic spectral density(CSD) instead of the complex sound pressure was adopted as reconstructing physical quantity in the PNAH, and the cyclostationary PNAH(CPNAH) technique was proposed. Meanwhile, focusing on the calculation complex of CSD and the accuracy of the cyclic nature extracted, the gathering slice method of CSD was proposed by referring time aliasing methods on time series. The experiment results illustrate that the cyclic nature of cyclostationary sound field may be extracted directly and the location of the source determined exactly as well.


2014 ◽  
Vol 971-973 ◽  
pp. 1598-1601
Author(s):  
Xu Liu ◽  
Xiao Qin Liu ◽  
Chang Liu

Near-field acoustic holography (NAH) is a powerful technique for identifying noise sources and visualizing acoustic field.The theory and algorithm of NAH techniques are introduced , and it is proved by experiment and simulation. The researches on near field acoustical holography (NAH) are reviewed,including the sound field separation technique and Patch NAH technique arisen in recent years.The difficulties in NAH and research on current situations are discussed , Finally,some engineering applications are introduced by detailed examples.


Sign in / Sign up

Export Citation Format

Share Document