Finite element simulation of the static characteristics of a vehicle rubber mount

Author(s):  
L-R Wang ◽  
Z-H Lu ◽  
I Hagiwara

The static and dynamic characteristics of the rubber mounts for vibration isolation in automotive powertrains and other dynamic systems should be predicted during their design and development stage. In this paper, the static characteristic simulation of a rubber mount is performed using the finite element method. The modelling and simulation methods for a large deformation rubber spring represented by axisymmetric, quarter-symmetric and three-dimensional finite element models are investigated by using finite element analysis software PATRAN for meshing and ABAQUS and ADINA for computations. The predicted vertical static elastic characteristics of the rubber spring agree well with the experimental results. The static strain-stress analysis of the rubber part shows that the von Mises stress can be adopted as a stress measure for the rubber material. Moreover, the modelling methods for the large deformation rubber mount are investigated with numerical tests of elastic characteristics. The hybrid elements with full integration and lower-order interpolation show less distortion and are suitable for large deformation simulation computations. The research results will help engineers and researchers to perform engineering design and analysis of rubber mounts and other vibration reduction rubber components using the finite element simulation method.

2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


Author(s):  
Sachin Kumar Nikam ◽  
◽  
Sandeep Jaiswal ◽  

This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


2018 ◽  
Vol 251 ◽  
pp. 04056 ◽  
Author(s):  
Zelimkhan Khakiev ◽  
Alexander Kruglikov ◽  
Georgy Lazorenko ◽  
Anton Kasprzhitskii ◽  
Yakov Ermolov ◽  
...  

Analysis of mechanical behavior of ballast shoulder of railway track reinforced by polyurethane binding agent has been performed by the method of finite-element simulation Limitation of the model of linear-elastic properties of geocomposite has been displayed. Dependence of elasticity modulus of geocomposite on deformation value has been suggested. Influence of penetration depth of polyurethane binding agent on behavior of railway track construction under different train loads has been studied.


2013 ◽  
Vol 652-654 ◽  
pp. 1966-1970
Author(s):  
Zhi Ren Han ◽  
Ze Bing Yuan

This paper is focus on two-Pass Deep Drawing Forming of conical axisymmetric parts, study on the finite element simulation and test of multi-Pass deep drawing part. It carry on the finite element analysis and calculation using the ANSYS/LS-DYNA software platform, analyzing the simulation results such as stress , strain distribution and formability by post-processing LSPOST software. It was done multi-Pass deep drawing test using a set of combined type mould. Based on the multi-Pass forming test by using a set of combined type mould, comparison of simulation and test data can be obtained through the forming limit diagram. The result of simulation and test is basically the same and both reflect the formability.


2013 ◽  
Vol 747 ◽  
pp. 261-264 ◽  
Author(s):  
T. Pulngern ◽  
K. Preecha ◽  
Narongrit Sombatsompop ◽  
V. Rosarpitak

This paper investigates the finite element simulation to predict the creep response of Wood/PVC (WPVC) composite members before and after strengthening by using high carbon steel (HCS) flat bar strip adhered to the tension side. The creep parameters based on power law models of WPVC composites and the HCS flat bars were determined experimentally. Then, the nonlinear finite element analysis (FEA) software of ABAQUS was applied to predict the creep behaviors of composite members using the obtained experimentally creep parameters of individual component of WPVC composites and HCS flat bars. Good correlation between finite element simulation and experimental results are obtained for all cases. ABAQUS software with power law creep model show good potential for prediction the creep response of WPVC composites before and after strengthening.


2014 ◽  
Vol 983 ◽  
pp. 226-230
Author(s):  
Zhu Dan ◽  
Zheng Yan

Machining of metals make use of thermal mechanical FEM model. Analysis of nonlinear elastoplastic finite element simulation of milling of 45 # steel material use software of ABAQUS that is finite element simulation technology. ABAQUS software could be carried out on prediction of the milling force. Through finite element analysis, distribution of stress field of workpiece and tool is obtained under the influence of thermal mechanical. The prediction accuracy of the model was validated experimentally and the obtained numerical and experimental results were found in good agreement.


2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Malik Athafarras ◽  
Djati Wibowo Djamari ◽  
Muhamad Rausyan Fikri ◽  
Bentang Arief Budiman ◽  
Farid Triawan ◽  
...  

AbstractThe problem considered in this work is the development of simulation method for simulating car crash which utilizes simple car—impact attenuator model developed in MATLAB. Usually, car crash simulation is done using full finite element simulation which could take hours or days depending on the model size. The purpose of proposed method is to achieve quick results on the car crash simulation. Past works which utilizes simple car—impact attenuator model to simulate car crash use continuous time model and the impact attenuator parameter is obtained from the experimental results. Different from the related works, this work uses discrete time model, and the impact attenuator parameter is obtained from finite element simulation. Therefore, the proposed simulation method is not only achieving quick simulation results but also minimizing the cost and time in obtaining the impact attenuator parameter. The proposed method is suitable for parametric study of impact attenuator.


2020 ◽  
Author(s):  
Ans Al Rashid ◽  
Ramsha Imran ◽  
Muhammad Yasir Khalid

Abstract The mechanical behavior of materials plays a vital role in the structural performance of designed structures. Therefore, significant resources are devoted globally towards experimental characterization of material behavior, especially for the experiments requiring particular protocols. Contrary, finite element analysis tools have made a substantial contribution to the design of structural elements, which could conserve a significant amount of resources and material wastage. Evaluation of fatigue life of materials is necessary to predict the life expectancy of the structures precisely, and opening stress levels under fatigue loading contributes towards this evaluation. Railways serve as freight and passenger carrier transportation modes. The railway axles contribute as the primary load-carrying element; therefore, the design of railway axles and the study of their mechanical behavior under repeated loading is vital. In this study, the authors present a finite element simulation technique to evaluate the opening stress levels for two structural steels subjected to low cycle fatigue. The finite element analysis (FEA) model was designed and validated following the simulation of fatigue crack propagation under high plasticity conditions. Numerical simulation results were compared with the experimental results obtained earlier through the digital image correlation (DIC) technique. To conclude, FEA could be a useful tool to predict crack closure phenomena and, ultimately, the fatigue life of components. However, researchers need to establish more sophisticated numerical tools for more precise results in case of high plasticity conditions near the crack tip.


Sign in / Sign up

Export Citation Format

Share Document