A magnetic-resonance-compatible limb-positioning device to facilitate magic angle experiments in vivo

Author(s):  
H Elhawary ◽  
A Zivanovic ◽  
Z T H Tse ◽  
M Rea ◽  
B L Davies ◽  
...  
2010 ◽  
Vol 4 ◽  
pp. MRI.S6028 ◽  
Author(s):  
Katarina Stenman ◽  
Izabella Surowiec ◽  
Henrik Antti ◽  
Katrine Riklund ◽  
Pär Stattin ◽  
...  

The use of magnetic resonance spectroscopy (MRS) for the detection of in-vivo metabolic perturbations is increasing in popularity in Prostate Cancer (PCa) research on both humans and rodent models. However, there are distinct metabolic differences between species and prostate areas; a fact making general conclusions about PCa difficult. Here, we use High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy to provide tissue specific identification of metabolites and their relative ratios; information useful in providing insight into the biochemical pathways of the prostate. As our NMR-based approach reveals, human and rat prostate tissues have different metabolic signatures as reflected in numerous key metabolites, including citrate and choline compounds, but also aspartate, lysine, taurine, glutamate, glutamine, creatine and inositol. In general, distribution of these metabolites is not only highly dependent on the species (human versus rat), but also on the location (lobe/zone) in the prostate tissue and the sample pathology; an observation making HRMAS NMR of intact tissue samples a promising method for extracting differences and common features in various experimental prostate cancer models.


2015 ◽  
Vol 35 (5) ◽  
pp. 828-834 ◽  
Author(s):  
Elena Jiménez-Xarrié ◽  
Myriam Davila ◽  
Sara Gil-Perotín ◽  
Andrés Jurado-Rodríguez ◽  
Ana Paula Candiota ◽  
...  

Ex vivo high-resolution magic-angle spinning (HRMAS) provides metabolic information with higher sensitivity and spectral resolution than in vivo magnetic resonance spectroscopy (MRS). Therefore, we used both techniques to better characterize the metabolic pattern of the infarct and the neural progenitor cells (NPCs) in the ipsilateral subventricular zone (SVZi). Ischemic stroke rats were divided into three groups: G0 (non-stroke controls, n = 6), G1 (day 1 after stroke, n = 6), and G7 (days 6 to 8 after stroke, n =12). All the rats underwent MRS. Three rats per group were analyzed by HRMAS. The remaining rats were used for immunohistochemical studies. In the infarct, both techniques detected significant metabolic changes. The most relevant change was in mobile lipids (2.80 ppm) in the G7 group (a 5.53- and a 3.95-fold increase by MRS and HRMAS, respectively). In the SVZi, MRS did not detect any significant metabolic change. However, HRMAS detected a 2.70-fold increase in lactate and a 0.68-fold decrease in N-acetylaspartate in the G1 group. None of the metabolites correlated with the 1.37-fold increase in NPCs detected by immunohistochemistry in the G7 group. In conclusion, HRMAS improves the metabolic characterization of the brain in experimental ischemic stroke. However, none of the metabolites qualifies as a surrogate biomarker of NPCs.


Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S692-S692
Author(s):  
Mathias Hoehn ◽  
Uwe Himmelreich ◽  
Ralph Weber ◽  
Pedro Ramos-Cabrer ◽  
Susanne Wegener ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document